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Abstract

As software systems become increasingly heterogeneous, the ability of compilers to
reason about an entire system has decreased. When components of a system are not
implemented as traditional programs, but rather as specialised hardware, optimised
architecture-specific libraries, or network services, the compiler is unable to cross these
abstraction barriers and analyse the system as a whole.

If these components could be modelled or understood as programs, then the com-
piler would be able to reason about their behaviour without concern for their internal
implementation details: a homogeneous view of the entire system would be afforded.
However, it is not often the case that such components ever corresponded to an origi-
nal program. This means that to facilitate this homogenenous analysis, programmatic
models of component behaviour must be learned or constructed automatically.

Constructing these models is an inductive program synthesis problem, albeit a
challenging one that is largely beyond the ability of existing implementations. In order
for the problem to be made tractable, information provided by the underlying context
(i.e. the real component behaviour to be matched) must be integrated.

This thesis presents three program synthesis approaches that integrate contextual
information to synthesise programmatic models for real, existing components. The
first, Annote, exploits informally-encoded information about a component’s interface
(e.g. from documentation) by weaving that information into an extended type-and-
attribute system for component interfaces. The second, Presyn, learns a pair of coop-
erating probabilistic models from prior syntheses, that aim to predict likely program
structure based on a component’s interface. Finally, Haze uses observations of com-
mon side-effects of component executions to bias the search for programs. These
approaches are each evaluated against comparable synthesisers from the literature, on
a set of benchmark problems derived from real components.

Learning models for component behaviour is only a partial solution; the compiler
must also have some mechanism to use those models for program analysis and trans-
formation. This thesis additionally proposes a novel mechanism for context-sensitive
automatic API migration based on synthesised programmatic models, and evaluates
the effectiveness of doing so on real application code.

In summary, this thesis proposes a new framing for program synthesis problems
that target thebehaviour of real components, anddemonstrates threedifferentpotential
approaches to synthesis in this spirit. The success of these approaches is evaluated
against implementations from the literature, and their results used to drive a novel
API migration technique.
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Chapter 1

Introduction

1.1 Understanding Systems with Synthesis

Being able to model the behaviour of complex systems is a vital tool in software
engineering. If a system can bemodelled, then it can be reasoned about in a structured
way; this reasoning then allows for changes to its implementation to be made, or for it
to be combined with other systems while preserving abstraction.

Themost commonmodel for the behaviour of a system is to express that behaviour
as a program. Programs offer a structured representation that can be analysed and
manipulated using existing tools, without imposing the overhead and complexity of
a fully formally-specified or verified system. Historically, research into optimising
compilers has demonstrated the utility of programmatic reasoning: by analysing and
transforming the local behaviour of a program, significant improvements can be made
to the system modelled by that program.

When a system is implemented entirely as a locally-known program, this type of
programmatic reasoning is available “for free“, as every possible behaviour of the
system is captured by its code. Additionally, little or no additional work is required by
the maintainers of the system to support analysis. However, this scenario is becoming
increasingly rare in practice. Today, more and more systems make use of opaque

third-party components that do not share the same programmatic representation (for
example, they might be libraries distributed as compiled binaries, calls to a network
service, or interfaces to hardware). In these situations, existing methods for analysing
behaviour programmatically break down.

It is clear that as the degree of heterogeneity in system implementation continues
to grow, existing programmatic approaches to analysing system behaviour will be-
come less useful. However, if a programmatic model for the behaviour of an opaque
component could be obtained, then gradual progress towards reasoning about the

1
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whole system can be made. One way to do so is to require developers to annotate
opaque components with formal descriptions of their expected behaviour. However,
this places a significant burden on the system developers: an automated or partially
automated method for modelling the behaviour of opaque components would be an
improvement to this scenario.

A potential solution to the problem of extending programmatic reasoning to sys-
tems with opaque components is program synthesis: the automatic construction of a
program that exhibits behaviour equivalent to that component. If such a program can
be constructed for each component in a system through observations of its behaviour,
then the “gaps” in the programmatic model of the system can be filled in.

However, program synthesis is an open research problem; even state-of-the-art sys-
tems for general synthesis are unable to synthesise programsmatching the complexity
of typical system components without substantial external assistance. To do so, addi-
tional contextual information from the systemmust be combined with observations of
the component’s behaviour.

1.2 Synthesis from Real Objects

The problem posed above (automatically discovering the behaviour of general compo-
nents through synthesis) raises a subtle point relative to much of the existing program
synthesis literature. Synthesis tasks where a specification is provided by observations
of behaviour are typically known as oracle-guided. The oracles in question are al-
most always treated abstractly; observations of their behaviour are taken axiomatically
without substantial examination of how that behaviour arises in practice.

However, in the context proposed above (modelling the behaviour of a particular
component), the observed behaviours are obtained directly from the execution of a
concrete component. This means that on one hand, observing behaviour requires
resources (e.g. execution time or power) to be explicitly consumed; on the other hand,
it means that additional information beyond the core functionality of the component
can be acquired. Rather than just understandingwhat a component does, in this context
some observation of how it goes about its work is possible.

The synthesis problems that must be solved to model the behaviour of real-world
components are beyond the complexity typically achievable by existing synthesisers,
and so a hook to reduce the problem to amore tractable one is necessary. The additional
behavioural information exposed by real components about their internal mechanisms
and interfaces provides this hook. By considering sources of information that, in
isolation, cannot be used to determine the correctness of a potential solution, the space
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of programs to be searched during synthesis can be reduced in size. This type of
reasoning is common in synthesis research; almost every technique requires some
kind of domain knowledge to be exploited for the process to be viable.

1.3 Understanding New Opportunities

While modelling the behaviour of system components as programs using synthesis is
an interesting problem in the abstract, it is necessary to establish a motivating scenario
where this this capability is useful in practice.

Consider ahand-written application that exhibits a computational bottleneckwhich
would be desirable to optimise. The developers of this application may be aware at a
high level that a particular component (e.g. a library or specialised hardware device)
may somehow be able to improve the performance of that bottleneck, but be unable
to take advantage of it. There are several reasons why this might be the case: a lack
of knowledge of the low-level details of the component, insufficient maintenance re-
sources, or a desire to keep the application portable without locking it in to a particular
platform.

If the behaviour of the optimised component could be learned using synthesis, then
these problems can be ameliorated. By modelling its behaviour as a program, appli-
cation developers can be more confident of the details required to use the component.
Similarly, the effort required to modify the application code to use the component
is reduced; this leads naturally to easier changes to the application and simplified
portability.

This scenario leads naturally to a workflow, which will be explored in this thesis.
First, programs that model the behaviour of components are synthesised (the precise
method for this depends on the contextually available information about the compo-
nent’s behaviour). Then, the synthesised program can be used with existing library
migration tooling to port and optimise applications.

1.4 Structure of this Thesis

The remainder of this thesis is laid out as follows.

Following the introduction, Chapter 2 examines prior and related work in the
literature. A careful examination of program synthesis and its associated theory is
given. Several variants of synthesis including sketch-based, neural and stochastic
are considered in detail along with associated results and benchmark achievements.
Additionally, related work in automatic program optimisation, API migration and
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legacy code repair is examined.

Then,Chapter 3 sets out the requisite background technical knowledge and context
for this thesis, including important terminology and definitions. An introduction
to program synthesis is given, as well as an overview of the optimising compiler
toolchains that underpin the research in this thesis.

Chapters 4 to 7 form the bulk of the technical and research contributions. They
cover, in large part, four research papers published during the course of this thesis.
In these chapters, a methodology for automatic program optimisation and refactoring
using program synthesis is developed.

First, Chapter 4 considers the synthesis of a narrow set of performance-critical
functions found in scientific applications. To do so, a domain-specific language is
introduced that extends ahost type systemwith arbitraryproperties. Aquery language
is used to heuristically direct synthesis based on the properties of a problem’s type
signature. Finally, an experimental analysis is performed to determine whether this
regime can produce meaningful performance improvements.

In Chapter 5, this system is extended to include a probabilistic component where
two cooperative models predict relevant properties of a synthesis problem. By doing
so, less user input is required and greater generality can be achieved by the synthe-
siser. The synthesiser developed in this chapter is compared to four other leading
implementations on a large set of synthesis benchmarks drawn from the literature.

Performance improvements are only one of the possible reasons to perform auto-
mated refactoring of code. Doing so in general is known as API migration, and is an
open research area in software engineering. Chapter 6 examines the synthesis results
achieved previously in the context of an API migration problem.

Type signature annotations and probabilistic models are two orthogonal ways in
whicha synthesiser canbe extended to incorporate informationother thana correctness
specification. In Chapter 7, a new synthesiser is developed that uses multiple sources
of additional information (obtained dynamically from an executing oracle) to reduce
the size of its search spaces.

Finally, Chapter 8 summarises the contributions made in this thesis and identifies
possible avenues for future research to explore.

1.5 Contributions

This thesis contributes three comparable approaches to program synthesis: Annote,
Presyn and Haze; each one attacks the problem of synthesis from an oracle backed
by a real-world component using different assumptions and techniques. Annote uses
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contextual information suppliedby component vendors,Presyn learnspredictiveprob-
abilistic models that encode problem structure, and Haze uses information obtained
from dynamic executions of the oracle to partially constrain the structure of potential
solutions.

To evaluate these approaches, large sets of benchmark tasks are collected from the
literature. These benchmarks cover a broader set of problem domains than previous
comparisons do, and are implemented so as to facilitate a fair comparison against other
leading synthesisers. Presyn and Haze both demonstrate state-of-the-art performance
across the set of benchmarks used, scaling to more difficult problems than previous
work.

A methodology is developed to exploit synthesised programs for API migration
tasks; by doing so, substantial performance improvements can be realised on real-
world legacy programs. Additionally, the approach generalises well and allows for the
discovery of complex API migrations that consider both existing library calls and their
context within an application.

1.6 Summary

Modelling the behaviour of opaque components as programs using synthesis strikes a
balance between practicality and strength of analysis. By doing so, component models
can be analysed homogeneously, using the same tools as for “natural” application code.
As an example use case, this leads to intuitive opportunities for library migration
and portable code rejuvenation. However, synthesising the behaviour of arbitrary
components is challenging, and requires the integration of contextual information
where it is available. The remainder of this thesis proposes methods for the synthesis
of programmatic models for opaque components, as well as their application to code
rejuvenation and modernisation.





Chapter 2

Related Work

This chapter summarises the diverse body of work relevant to the content of this
thesis, focusing on four key areas of interest. First, to contextualise the overall aims
of this thesis, the role of traditional compiler analyses and techniques in improving
the performance of legacy code is examined. Similarly, extensions to the traditional
compilationmodel that have similar objectives are examined. Next, the field of general
program synthesis is broken down into more specific subdomains relevant to this
thesis. A more specific analysis is then given to lifting techniques, where code or
specifications are recovered from obfuscated or low-level implementations. Finally, an
overview of automated software engineering techniques that aim to achieve similar
goals as this thesis is given.

2.1 Compiler Analysis and Code Rejuvenation

2.1.1 Traditional Compiler Analysis

Historically, programmersweremore concernedwithmaking sure that their programs
were correct (and indeed, that they would run at all on the systems of the time). As
programs became larger and more complex, it became more and more important for
the compiler to automatically produce optimalmachine code from user programs. One
of the first practical optimising compilers is described by Wulf et al. [7] for the BLISS
language, targeting the PDP-11.

Since then, enormous effort has been focused on the design and implementation of
optimising compilers for everymainstreamprogramming language. TheLLVMproject
[8] implements an intermediate representation (IR) that allows for optimisations and
analyses to be more easily expressed, eventually spawning the Clang C compiler.
Similarly, projects such as GCC [9] and GHC [10] represent hundreds of thousands of
developer-hours of effort towards producing faster compiled programs.

7
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Typically, the optimisations applied by traditional compilers are conservative and lo-

cal in nature. To avoid introducing new bugs into user programs through optimisation,
compiler developers must be certain that their transformations are correct; for exam-
ple, the Alive2 tool [11] aims to formally verify optimisations performed by LLVM,
and has identified 47 novel bugs in the process of doing so. As a result, the pace of
compiler development can be slow. The CAnDL [12] language offers a domain-specific
language for compiler analyses; by doing so, the number of lines of code required to
write an analysis is reduced greatly, allowing developers to iterate more quickly.

Research and development of compiler optimisations grew from the need to emit
the best possible sequence of instructions for a particular program or function; this
optimisation problem is inherently local, leading to a proliferation of research into low-
level optimisations. Chakraborty [13] offers a summary of fifty years of research into
peephole optimisation, where small windows of machine instructions are analysed
with no consideration of the broader program context. Even as recently as 2010,
analysing the entire content of a program at once was not a practical way to improve
compiler output [14].

Despite these shortcomings, traditional compiler analyses and techniques continue
to slowly adapt to the changing demandsmade of them. For example, CREV [15] offers
state-of-the-art granularity in applying auto-vectorisation optimisations to scalar pro-
grams. Formal methods such as the polyhedral loop model [16] continue to provide
fruitful mechanisms for verified reasoning; the polyhedral.info research community
cite over 140 papers building on the core formalism. The application of traditional tech-
niques such as constant-propagation and dead code elimination to as-yet unexplored
problem domains has also proved to be profitable; by applying these optimisations to
real-world graphics shaders, substantial performance improvements can be made on
real programs [17].

Even so, a need for improved understanding of the high-level semantics of programs
being compiled has been recognised by the community; for example, the MLIR project
[18] builds on the infrastructural lessons learned from building LLVM, but allows for a
far wider range of abstractions to be expressed in intermediate programs. By doing so,
domain-specific semantic transformations can be implementedwithout costly pattern-
recognition or lifting steps. Relatedly, Wang and O’Boyle [19] identify that the use
of machine-learning techniques in compilers is increasingly prevalent, and allows for
complex patterns or transformations to be obtained without a human expert.

https://polyhedral.info
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2.1.2 Domain-Specific Languages and Compilers

To allow the compiler to understand and interpret high-level semantic information
about a program’s behaviour, a common strategy is to express programs in a domain-
specific language (DSL) that better captures the abstract nature of the computation.
This allows for optimisations to be applied that would be impossible or impractical to
implement on a lower-level representation.

TheHalide language [20] implements an embeddedC++DSL specifically for image-
processing pipelines. By specifying high-level operations in a Halide program, their
precise implementations and execution schedule can be computed or tuned by the
compiler. The LIFT compiler IR [21] provides a functional representation that can be
optimised specifically for a given target device using a series of rewrite rules. Domain-
specific languages can be implemented in terms of the LIFT abstraction; for example,
for stencil computations [22]. LiLAC [23] is a DSL for sparse linear algebra kernels; the
kernels can be compiled to efficient harnesses to the appropriate library functions.

Perhaps the most widely-used domain-specific compilers at present are those for
machine-learning applications, across a wide range of abstraction levels. At a high
level, frameworks like TensorFlow [24] and PyTorch [25] compile descriptions of a
neural network (explicit graphs and imperative Python code, respectively) to efficiently
scheduled models. At a lower level, tools like TACO [26] and LGen [27] compile
abstract specifications for tensor algebra kernels into efficient code in a general-purpose
language.

2.1.3 Optimised Libraries and Hardware

As hardware becomes increasingly specialised, the software libraries running on that
hardware have necessarily followed suit to maintain competitive performance. It is no
longer sufficient to provide the fastest hardware or the best-optimised library; the co-
design of the two is critical. Large commercial vendors such as Intel [28] and Nvidia
[29] provide proprietary routines to optimise common computations on their own
hardware, while efforts like OpenCL [30] attempt to provide unifying standardised
versions of the same.

For library developers who are unable or unwilling to lock their users into a single
hardware platform, an appealing middle ground is to tune parameters of the library
to better fit the hardware being targeted. For example, libraries performing linear
algebra computations are commonly optimised by doing so; Xu et al. [31] demonstrate
the optimisation of matrix-vector products on the GPU, while Byun et al. [32], Borštnik
et al. [33] and Elafrou et al. [34] all explore the parameter space of sparse matrix
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implementations on different platforms.
Automatic tuning can be applied to more complex problem domains. Mullapudi

et al. [35] optimise real-world image-processing pipelines for particular hardware,
while the LIFT compiler [21] provides language-level support for tuning the perfor-
mance of arbitrary applications.

However, the barrier to entry for developing novel hardware continues to de-
crease. This means that instead of developing and tuning a software library to run
on general-purpose hardware, a specialised hardware accelerator can be built instead.
By sacrificing generality, the scaling limitations of general-purpose compute [36, 37]
can be overcome, leading to improved performance. In recent years, there has been a
Cambrian explosion of these devices, in a hugely varied set of application domains:
machine learning [38, 39, 40], physical system simulation [41] and regular-expression
checking [42] are just three recent examples. Specialised hardware can be extremely
specific; Koenig et al. [43] present the design of a hardware component that only
computes an exact floating-point dot product.

2.2 General Program Synthesis

2.2.1 Inductive Synthesis

This thesis is concerned primarily with inductive synthesis, where the specification of
a problem may be incomplete, and certainly cannot be transformed deterministically
into a solution (as is the case for deductive synthesis). David and Kroening [44] offer
a comprehensive summary of the history, challenges and outlook for the field of
inductive synthesis; they conclude that while synthesis offers a powerful tool to solve
problems that challenge human users, careful thought must be given to the design of
synthesis tools and systems to allow them to scale and generalise.

Before beginning an overview of the inductive synthesis literature, it is useful to
consider and keep in mind the three dimensions of synthesis identified by Gulwani
[45]: “expression of user intent, space of programs over which to search, and the
search technique”. These dimensions capture succinctly the potential variations be-
tween synthesisers, and allow for meaningful comparisons to be drawn. Despite these
dimensions, however, drawing direct comparisons between the achievements and re-
sults of synthesisers can often be a challenging problem in its own right. Pantridge
et al. [46] explore the difficulty in comparing synthesisers that differ to a large extent in
one or more of these dimensions. For example, they find that genetic synthesis meth-
ods often achieve more general results than comparable implementations, but require
far greater computational resources to do so. Helmuth and Spector [47] propose and
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analyse the difficulty of a common set of benchmarks as an attempt to address this
issue.

Perhaps the single greatest improvement to general inductive synthesis is the in-
troduction of counterexample-guided feedback loops (known generally as CEGIS)
[48, 49]. Under the CEGIS model, candidate programs are checked for correctness
using a verification tool; if the candidate is incorrect, a counterexample is generated as
evidence. The synthesiser integrates that example into its specification, then generates
a new candidate. This process takes advantage of the ability of counterexamples to
reject large classes of incorrect programs, meaning that the candidate search space can
be pruned quickly.

Since its introduction, the CEGIS model has formed a starting point for further
theoretical and practical research into inductive synthesis. Jha and Seshia [50] offer a
theoretical extension of the CEGIS model (oracle-guided, OGIS) that considers oracles
that can provide stronger or weaker information than a falsifying counterexample.
Theoretical bounds on time and space complexity for idealised synthesisers that con-
sume different classes of oracle information are given. Abate et al. [51] observe that
the ability of the verification component in a CEGIS loop to produce useful constraints
is a potential bottleneck. Their solution, CEGIS(T ) parameterises a CEGIS loop with a
stronger underlying theory solver that can provide better constraints on the structure
of candidate programs (for example, by using a Fourier-Motzkin solver to eliminate
linear inequalities).

The core ideas behind CEGIS can be abstracted behind higher-level tools. The
Rosette project [52] extends the Racket programming language with a set of “solver-
aided” primitives that can be used to implement the verification component of a
CEGIS synthesiser. The result of doing so is a DSL for implementing specialised
synthesisers; example applications include synthesising memory consistency models
[53] or interpretable solutions to logic puzzles [54].

While CEGIS is a useful and powerful technique, it suffers from some key limita-
tions in certain problem contexts. For example, Solar-Lezama [55, Lecture 10] high-
lights potential pathological cases for CEGIS loops: if each additional counterexample
causes only a marginal decrease in the size of the search space (i.e. desired solution
behaviours are very sparse), then the suggest-verify cycle is inefficient. David and
Kroening [44] identify the need to work “meta-level” tasks (such as the identification
of solution structure) into the CEGIS loop more effectively. Additionally, synthesised
solution programs must admit verification of some kind.

Inductive synthesis is by no means restricted to the synthesis of “traditional”,
Turing-complete imperative or functional programs; as long as a target language sup-
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ports verification, then programs in that language can be synthesised using a CEGIS
loop. Bastani et al. [56] learn context-free grammars for the inputs accepted by a pro-
gram, while Bavishi et al. [57] synthesise operations in a DSL for repairing programs.
Other work has examined the synthesis of sound parallelisation strategies for existing
programs [58, 59].

2.2.2 Sketching

The initial work on what would become the CEGIS methodology was carried out
during the development of Sketch [48], a synthesis-enabled language that popularised
the sketching approach to synthesis. Under this approach, a partial program with
syntactic “holes” is supplied to the synthesiser, which is responsible for instantiating
the holes with concrete values to produce a correct solution. In the original version of
Sketch, the underlying language supports finite bit-vectors, and terminating programs
can be verified by way of a formal semantics. If a user of Sketch is able to provide an
adequate sketch to the system, a satisfying solution can be identified by discharging
the underlying bit-vector program to a SAT solver.

Subsequent work extended Sketch to support concurrent semantics and complex
data structures, as well as a broader notion of sketches and holes that permitted
disconnected components to form solutions [49]. Solar-Lezama [60, 61] gives a detailed
summary of this early work on sketching, and identifies key areas for future work; of
particular relevance are the observation that high-level semantic insight will become
more useful for synthesising complex programs, and the need for non-functional
specifications to guide or inform synthesis.

While the initial presentation of Sketch suggested that sketches would be supplied
by an end-user of the tool, the higher-level idea that synthesis could be split into
two phases (identifying, in turn, the structure and details of a solution) has been
developed and generalised to other scenarios. Wang et al. [62] use a permissive over-
approximation of SQLquery semantics to identify partial queries that could potentially
meet a specification. These partial queries can then be instantiated by a search-based
synthesis step. A generalisation of these ideas is iSQL, [63] which combines the same
two-phase structure with interactive user feedback.

Other work has focused on extending the capabilities and semantics of the core
sketch abstraction. By popularising a sketch language to include uninterpreted func-
tions that are backed by “native” code, Singh et al. [64] demonstrate an effective
mechanism for decomposing sketching synthesis problems into smaller components.
The Synapse tool [65] defines a notion ofmetasketches, where the space of programs rep-
resented by a given sketch is equipped with an additional cost and gradient function
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that allows search to be directed to “better” sketches by way of gradient descent.

The syntax-guided synthesis (SyGuS) framework [66] provides a general abstrac-
tion and specification format for sketch-like synthesis. Under this model, all sketches
are treated as productions of a context-free grammar, and particular synthesisers are
viewed as instances of the parameterised SyGuS model (e.g. by having a different
background theory). Work on the abstract SyGuS model exists outside of specific
instantiations; for example, Lee et al. [67] use probabilistic CFG search to accelerate
general syntax-guided synthesis.

2.2.3 Synthesis of Imperative Programs

Much of the synthesis literature deals with the synthesis of programs expressed in
tree-like abstract syntax formulations. This is for good reason; implementing seman-
tic analysis and search procedures over AST-like structures is simple, and domain-
specific languages can be easily specified. For example, the FlashFill project uses a
Turing-incomplete DSL of string-processing operations [68, 69]. Nevertheless, there is
considerable interest in the synthesis of stateful, imperative programs.

One approach to the synthesis of imperative programs is to constrain the potential
behaviour of those programs; the original Sketch [48] semantics constrain programs to
finite loop bounds to allow for a SAT-solver compatible finite encoding. Newer work,
such as Simpl [70] uses similar ideas, but with more sophisticated static analysis and
abstract interpretation to discharge invalid programs and prune its search space. Shi
et al. [71] use a similar over-approximation-based initial synthesis technique as Scythe
[62], but applied to imperative control flow rather than SQL queries.

An entirely separate approach to synthesis iswhen synthesising linear sequences of
assembly-like instructions. In this domain, different algorithms lead to state-of-the-art
performance. For example, Makespeare [72] uses a hill-climbing genetic algorithm to
evolve sequences of x86 instructions implementing complex programs with looping
control flow. In more localised contexts, boolean SAT solvers can be used to precisely
model short sequences of instructions such that an optimal replacement sequence can
be identified. This task is superoptimisation [73, 74].

2.2.4 Programming by Example

One of the most intuitive statements of program synthesis is to specify correctness
with a set of examples: given input G, a correct solution should produce output H. The
task of generalising correctly from a set of examples to a solution is programming by

example (PBE).
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Much of the literature in the area deals with automating programmatic tasks that
are easy to specify, but tedious or fiddly to implement. For example, the FlashFill
project [68, 69] implements a PBE system for spreadsheet formulas; users provide a
small number of examples, and a general formula is synthesised for them. Similar
implementations exist (and have achieved widespread adoption and practical usage)
in a number of other problemdomains: TF-Coder [75] synthesises tensor computations
that comprise neural network models, while Feng et al. [76] generate manipulations of
dataframes in R.

Aswell asdirectly specifying the correctness ofpotential solutions, in someproblem
contexts it is possible tomake inferences of the structure of those solutions based on the
provided examples. �2 [77] synthesises transformations of algebraic data structures by
pruning away constructors and functions that would produce output examples with
an incorrect shape; an even more formal approach is taken by Frankle et al. [78], who
interpret a PBE problem as one of type-checking, and use deductive techniques to dis-
cover correct solutions. Conversely, DeepCoder [79] uses less precisemethods: a neural
network is trained on input-output examples to predict whether certain functions will
or will not be present in a correct solution.

Other work attempts to make the most efficient use possible of a small set of ex-
amples (for example, if providing those examples is difficult or expensive). An et al.
[80] apply specific perturbations to provided examples, attempting to force synthe-
sised solutions to respect abstract properties (such as permutation-invariance) without
stating them explicitly. Perelman et al. [81] wait until a candidate program has been
suggested before gathering further examples, under the assumption that doing so will
reveal insights into the structure of that solution.

2.2.5 Neural Synthesis

An increasing trend in program synthesis is the use of machine learning and neural
network techniques to improve synthesis, under the broad hypothesis that being able
to learn patterns from large corpora in combination with existing formal techniques
will allow for more challenging problems to be solved. Early work in neural program
synthesis typically used the neural component to condition or train a sub-component
of a traditional synthesiser. DeepCoder [79] is a good example of this model. More
recently, improvements to the representational capacity of neural networks has led to
the direct generation of programs from those networks becoming more popular. For
example, tokens might be emitted by the decoder component of an LSTM, or an AST
from a more complex tree decoder.

One of the reasons why neural approaches are popular is their ability to consider
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multiple facets of a specification homogeneously (by encoding them to the same in-
ternal representation). For example, Chen et al. [82] consider observations of a target
program’s execution to condition their network’s generation of syntactic tokens, while
Bunel et al. [83] incorporate the grammar of the target language into their model to
reject syntactically invalid programs.

SketchAdapt [84] attempts to strike a balance between traditional synthesis (slow,
provably correct) and direct neural generation (fast, potentially imprecise) by selecting
the best strategy to use for a given problem. For example, if a new problem resembles
a previous one, a solution can be directly extracted from the neural model; if no prior
context is available, then a traditional synthesis procedure is invoked to search for a
solution. DreamCoder [85] builds on these ideas by constructing an explicit two-phase
synthesis loop. In the first phase, solutions to sub-problems are identified, while in the
second they are combined and generalised to form a library of reusable components.

Neural methods can be applied widely to other aspects of program synthesis. Shin
et al. [86] examine the best way to augment and structure input-output examples
for neural PBE systems, to avoid bias in training processes. Kalyan et al. [87] use
neural methods to predict the best sequence of rules to apply in a deductive synthesis
environment.

2.2.6 Multi-modal Synthesis

Arecent trend in synthesis is tousenon-correctness specifications in addition to theusual
correctness specifications. By adding additional constraints that alone are not sufficient
to uniquely specify a solution, the search space can still be reduced in size. These
additional constraints are new modalities of information. The multi-modal hypothesis
is not unique to synthesis; machine learning research has demonstrated the use of
additional input modalities to assist the training of neural networks [88].

Much of the initial work examiningmulti-modal synthesis focuses on the combina-
tion of natural language processing (NLP) techniques alongside traditional synthesis
methods. Manshadi et al. [89] demonstrate one of the first attempts to do so; they
observe that the respective ambiguities in natural language and programming-by-
example specifications tend to cancel each other out to some extent. Further work [90]
builds on these ideas, formalising the approach as “compositional” synthesis. Chen
et al. [91] move away from traditional NLP techniques, instead applying a neural net-
work to interpret natural language specifications for data wrangling problems. Their
work treats partial sketches provided by the user as another, distinct modality.

Similar approaches have been usedwith great success to synthesise regular expres-
sions. Chen et al. [92] build sketches of regular expressions by interpreting natural
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language specifications, while Ye et al. [93] attack the more general problem of identi-
fying the solution that best matches the intent of the user’s specification (i.e. is optimal
with respect to a metric).

Some less common synthesis techniques can be understood through the lens of a
multi-modal framework. For example, Heule et al. [94] demonstrate an approach to
synthesising formal semantic models for instruction set architectures that comprises
multiple phases. In later phases, learned outputs from earlier phases are used to build
more complex results that would be intractable from their correctness specifications
alone.

Other, overloaded, uses of the term “multi-modal synthesis” exist; Thakoor et al.
[95] refer to a scenario where a set of ambiguous examples is provided, and the goal
of synthesis is to produce a set of programs that minimally covers the entire set of
examples (i.e. can explain the full range of distinct cases in the dataset).

2.2.7 Lifting

Synthesis and compilation are related processes; synthesis produces a high-level pro-
gram by induction from incomplete examples, while compilation produces a low-level
program by deduction from a high-level one. The term lifting1 refers to a similar sce-
nario, where a high-level program is produced by induction from a low-level one (i.e.
the inverse of compilation). Because semantic information is lost during compilation,
lifting a program to recover it is a more challenging problem.

The typical application of lifting is to recover a high-level representation of a com-
piled program that can then be recompiled more optimally. For example, Mendis
et al. [96] observe that significant portions of Adobe’s Photoshop image processing
tool could be run more efficiently if they were to be reimplemented using the Halide
compiler [20]. By observing dynamic traces of the application executing, they are able
to recover formal abstract models of the relevant stencil kernels. These can then be
recompiled for a substantial performance gain.

Lifting does not necessarily begin with compiled code; ordinary source code orig-
inally written for performance can be just as low-level from the perspective of static
analysis tools. Kamil et al. [97], Ahmad et al. [98] use a similar target as Mendis
et al. [96] (the Halide compiler), but lift from Fortran and C++ descriptions of image-
processing libraries respectively. By incorporating the original programs into their
tools, they are able to prove formally that the lifted solutions are in fact equivalent.
This level of verification is not always possible.

1Often, the term decompilation is seen in the literature. Typically, this refers to the recovery of the
original source code, while lifting may recover a representation never used in the original compilation
process.
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Much work in lifting does fall under the umbrella of decompilation (i.e. reversing
part of a compilation pipeline). For example, Hasabnis and Sekar [99] demonstrate
a method to learn decompilation rules through observations of a compiler’s code
generation phase. By doing so, they produce a general, portable framework for training
lifters. Dasgupta et al. [100] summarise the current state-of-the-art for binary lifters of
this kind, and propose a mechanism to compare implementations against each other
for bug discovery.

2.3 Automated Software Engineering

2.3.1 API Migration

Perhaps the single most studied task in automated software engineering is API mi-
gration; the task of transforming an application that makes calls to API G with calls
to API H, while maintaining its behaviour. Doing so has a number of use cases. For
example, old, out-of-date API usages can be modernised, different languages can be
supported, or library vendors can be changed. The subject of API migration at large is
summarised and organised into a taxonomy of changes by Robillard et al. [101].

Typically, API migration tools are driven by statistical methods. This is because
modelling the behaviour and semantics ofmany partial programs in potentially incom-
plete programs is intractable. In some limited cases, static observations of syntactic
structure can be useful; Xing and Stroulia [102] compose a library of patterns likely to
appear in library change logs, and map them onto user code refactorings. By doing
so, applications can be automatically brought up to speed when their downstream
dependencies are modified.

This approach typically does not scale, and most approaches use large corpora
to drive their implementation. MAM [103] analyses the code of an application with
multiple versions written in different languages, and identifies equivalent API pairs
across the versions. By doing so over a large set of applications, common rules for
cross-language migration can be identified. jv2cs [104] develops this idea further
by building comparable neural embeddings of Java and C# code contexts (i.e. the
surrounding code for every vocabulary item in the language). Then, API calls with
similar embeddings can be suggested as candidates for migration. Nguyen et al. [105]
successfully generalise the embedding-based approach to several other automated
software engineering tasks, such as method name suggestion.

As well as performing API migrations, a common theme in the literature is to
infer properties of code based on observations of changes made to that code. For
example, similar methods and APIs between different libraries can be identified by
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examining migrations from one library to another [106, 107]. Orthogonally, Alrubaye
and Mkaouer [108] aim to identify the subset of changes made to an application that
represent API migrations, in order to automatically generate migration log training
data.

2.3.2 Program Repair and Rejuvenation

In contrast to the usually statistical nature of API migration, the process of repairing
a faulty program tends to require a more semantic approach that integrates models
of the program’s behaviour. Often, synthesis or similar approaches are used to do so
alongside more traditional API migration tools.

Repairing faults in individual programs is an important goal in automated software
engineering. Phoenix [57] generates fixes for complaints generated by static analysis
tools by mining many examples of code repairs from a corpus. Examples that trigger
static analysis errors before a particular patch is made are used to provide information
about how to perform repairs. Synthesis is used to combine learned examples into
interpretable strategies for performing repairs. Nguyen et al. [109] transform faulty
programs into problems that can be solved by traditional compiler analyses, generating
repairs if the compiler is able to prove properties of the transformed program. Shaw
et al. [110] develop a library of safe, composable program transformations that when
combined, can be used to eliminate buffer overflow errors in C applications.

At a higher level of abstraction, bugs in specifications and implementations can be
discovered using similar abstractions. For example, Alive2 [11] implements a formal
semantics for LLVM intermediate representation. Compiler optimisations can then
be implemented in terms of this formal semantics, and thereby be checked formally
for correctness. Similarly, [53] combine informal litmus tests with partially-sketched
models of memory consistency semantics; from these inputs, full specifications for
valid memory models can be extracted and verified by hand. By doing so, ambiguities
or mistakes in the specification can be identified.

As well as repairing bugs in faulty programs, automated software engineering can
be used to rejuvenate or optimise correct (but sub-optimal) programs. For example, the
Halide-targeting family of lifters described previously [96, 97, 98] fall into this category
when their suggested changes are made to a program. Angstadt et al. [111] synthesise
hardware implementations of common string operations performed by an application,
then migrate the application code to call the hardware implementation. Ginsbach
et al. [23, 112] describe a method for identifying common idiomatic computational
patterns in application code, then automatically replacing identified instances with
calls to optimised library functions using a custom compiler pass.
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2.4 Summary

This chapter has examined prior work relevant to this thesis, under three broad head-
ings. First, Section 2.1 summarised existing approaches to compiler-based optimisation
and analysis of legacy code, as well as non-traditional compilation schemes designed
to integrate better with contemporary hardware and software. Then, Section 2.2 exam-
ined inductive program synthesis and lifting techniques across a number of problem
domains, with particular emphasis on those schemes where high-level information is
recovered from obfuscated or lowered representations. Finally, Section 2.3 gave an
overview of automated software engineering techniques that aim to achieve similar
goals to this thesis (by using different underlying approaches).





Chapter 3

Technical Background1

This chapter describes the shared technical and implementation details referenced in
Chapters 4 to 7. Throughout those chapters, appropriate references back to sections of
this chapter are made whenever an implementation detail is relied upon.

3.1 Overview

The structure of this chapter is as follows: first, Section 3.2 describes the compiler and
language context upon which both the program synthesis and API migration aspects
of this thesis are built, including an overview of the LLVM intermediate representation
(IR) [8] and a synthesis-specific compiler extension. Then, Section 3.3 adapts a paper
section introducing a relevant tool implemented by Philip Ginsbach, a co-author of
Collie et al. [2].

As themajority of this thesis is concernedwith program synthesis and related tech-
niques, Section 3.4 gives a general overview of important background knowledge and
terminology from the field. Of particular importance is sketching program synthesis,
where synthesised solutions are built up from smaller components. Section 3.5 pro-
vides the semantics of a sketch-based synthesis language used throughout the thesis.
Finally, based on the previous sections, Section 3.6 describes a general framework for
program synthesis.

Chapters 4 to 7 present several approaches to program synthesis that share some
technical underpinnings. This chapter explains the design choices that underpin these
details; in particular, the choice of LLVM IR as a target language for synthesis. By
targeting LLVM, the CAnDL code search engine can be used with a novel genetic
algorithm to identify application code with a structure compatible with synthesised
examples. Additionally, the design constraints that lead to the specific type of synthesis

1Parts of this chapter are adapted from published research in Collie et al. [2], Collie and O’Boyle [3].
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carried out in this thesis are contextualised in terms of the wider literature.
The design of a sketching language for synthesis is presented. This language allows

for arbitrary imperative programs to be built up compositionally from individual
fragments; the semantics of the particular fragments used to do so can be defined
by the consuming application (in this thesis, synthesisers). By providing a general
framework, synthesisers can share boilerplate code while implementing their own
specific search procedures and fragment definitions.

3.2 Compiler Integration

The initial motivation for this thesis (as given in Chapter 1) is to create a “smarter”
compiler that is more able to automatically take advantage of new libraries and hetero-
geneous hardware. This thesis presents several related approaches to doing so; each
of these is built as an extension to the open-source Clang/LLVM compiler toolchain.
In this chapter, an introduction to this toolchain is given along with an analysis of the
advantages and disadvantages of this choice.

Since its introduction, the Clang/LLVM toolchain has become the de facto choice for
compilers research; the first-party tooling support and comprehensive documentation
means that new techniques can be easily applied at different stages of the compilation
pipeline. For example, Anderson et al. [113] add instrumentation code during com-
pilation to check temporal logic assertions in C programs, Schardl et al. [114] extend
LLVM’s internals with first-class concurrency support, and Sasnauskas et al. [73] in-
terpose a superoptimiser with the compiler to optimise short instruction sequences.
Developing these diverse applications within GCC would be more cumbersome than
within Clang/LLVM.

3.2.1 LLVM Intermediate Representation

At the heart of LLVM’s comparative advantage for researchers and compiler devel-
opers is its intermediate representation (IR). To quote the LLVM project’s own documen-
tation:

LLVM is a Static Single Assignment (SSA) based representation that provides
type safety, low-level operations, flexibility, and the capability of representing
‘all’ high-level languages cleanly. It is the common code representation used
throughout all phases of the LLVM compilation strategy.
(Official LLVM Documentation [115])
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int abs(int x) {

if (x < 0)

x *= -1;

return x;

}

C Source
int abs(int x0) {

if (x0 < 0)

int x1 = x0 * -1;

int x2 =

x1 /* if branch taken */

x0 /* otherwise */;

return x2;

}

C (SSA Form)

define i32 @abs(i32 %x.0) {

entry:

%cond = icmp slt i32 %x.0, 0

br i1 %cond,

label %if.true, label %exit

if.true:

%x.1 = mul i32 %x.0, -1

br label %exit

exit:

%x.2 = phi i32

[%x.0,%entry], [%x.1,%if.true]

ret i32 %x.2

}

LLVM IR

SSA

Transform

Compile

Figure 3.1: A small C program, shown along with an LLVM IR program it could
validly be compiled to. Conditionals are lowered to basic block branches, andmutable
variables are converted to single static assignment form with ) nodes. Types similar
to the basic integer types available in C are retained in the LLVM IR, as the overall
structure of a function (call with parameters, return value).
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This neatly summarises the design goals of the IR: to provide a uniform, target- and
source language-independent representation that high-level languages can be lowered
to during compilation. This section gives an overview of the most important features
of LLVM IR as it is used in the remainder of the thesis. Figure 3.1 shows a running
example referenced throughout the section that demonstrates the transformation from
C to LLVM IR.

3.2.1.1 Program Structure

LLVM IR programs are arranged in a simple hierarchical structure. Their top-level
object is a module (analogous to a C translation unit), each of which contains a set
of global values and functions. A function comprises several basic blocks; these
are each linear sequences of instructions that must be terminated with a control-flow
instruction (e.g. a branch or return). Functions accept parameters and return a value
similarly to C functions.

Control flow within an LLVM function is encoded with branches between basic
blocks (either conditionally or unconditionally); the successor relationship between
basic blocks directly provides the control-flow graph (CFG) for a function. Higher-
level control flow structures such as loops are implementedwith conditional backward
edges in the CFG.

3.2.1.2 Static Single Assignment Form

Many traditional compiler analyses and optimisations are far harder to express in
the presence of mutable state; establishing precisely which assignments to a variable
are reaching definitions requires an iterative data-flow equation to be solved for that
variable. If, however, variables are assigned to exactly once, then use-def analyses can
be read straight from the structure of the program.

To address this issue, compilers commonly represent code in static single assignment

(SSA) form, where this property is enforced for every variable. Translating a program
with mutable variables to one in SSA form is mechanical; every reassignment to a
variable is converted to a freshly named assignment. For example, in Figure 3.1, the
variable x in the original C source code is reassigned if the branch is taken; in SSA
form (shown in hypothetical C-like syntax to the right), a new variable x1 is created
instead.

When control flow join points are reached in SSA programs (e.g. return x in the
C code in Figure 3.1), multiple versions of a variable may reach the join point. It is
a run-time property which of these versions is used; x2 in the SSA-form C program
can take either x0 or x1 depending on whether or not the branch was taken. The
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typical expression of such join points in SSA programs is as a ) ( phi ) node, where the
reaching values are encoded explicitly.2 In the LLVM code at the bottom of Figure 3.1,
the value of %x.2 depends on the previous control flow through the function.

3.2.1.3 Syntax and Semantics

Instructions in LLVM IR can produce SSA values when executed. For example, in
Figure 3.1, the result of the instruction mul i32 %x.0, -1 produces the new value
%x.1 . Instructions only produce single values, and each value is produced only once
(this is precisely a restatement of the SSA property).

In textual form, LLVM IR resembles a traditional 3-address code; opcodes (e.g. mul
or icmp slt ) are followed by comma-separated lists of arguments. These arguments
can be explicitly-typed references to other values (function-local values are written as
%name , and global ones as @name ), or literal constants.

Control-flow labels are written as name: and must be positioned at the start of a
basic block.3 ) nodes take a list of pairs of values (e.g. [%x.0,%entry] in Figure 3.1)
as arguments; each pair associates an immediate predecessor basic block with a value
to be selected if control flow passes through that block to reach the ) node.

LLVM IR programs can be compiled (ahead-of-time or just-in-time), or interpreted
using an abstract model of an infinite-register machine. For the purposes of this thesis,
no “advanced” features of the language or abstractmachine are relied on; the semantics
of any LLVM examples shown should be interpreted intuitively as pseudo-assembly.

3.2.1.4 Type System

Programs in LLVM IR are strongly, statically typed. The type of every value is known
statically during compilation, and instructions can only accept correctly-typed argu-
ments. While opcodes are overloaded in textual form ( mul i32 and mul i8 use the
same syntax), individual instructions are not polymorphic; a 32-bit integer can only be
added to another of the same size, and cannot be added to an 8- or 64-bit one.

Transparent aggregate (structure) types can be defined and referenced in a pro-
gram as if they were built-in LLVM types. Additionally, SIMD4 vector types can be
constructed, as can statically-sized dependent array types (e.g. [32 x i8] ).

Pointers analogous to C pointers exist in LLVM IR, with the key difference that the
computation of offsets (pointer arithmetic) and dereferences are implemented using

2Lowering ) nodes during code generation is a separate question to encoding them in the IR, and is
not relevant to the discussion in this section.

3A block with a label at an intermediate instruction (such that control would implicitly fall through)
can instead be written without loss of generality as two blocks with an unconditional branch between
them.

4Single Instruction, Multiple Data
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two distinct instructions ( getelementptr or GEP, and load ).
While the type system is strongly typed, some escapehatches exist in the formof bit-

level cast functions and explicit arithmetic conversions. For example, the underlying
bits of an 32-bit integer could be explicitly reinterpreted as a packed vector of four
8-bit integers. Similarly, a 32-bit float can be sign-extended to a 64-bit double-precision
value. These operations, importantly, are all well-defined within the type system.

3.2.2 Summary

The Clang/LLVM toolchain represented a substantial change in perspective among
compiler developers and researchers. By exposing a well-defined and documented
intermediate representation, tools that extend or modify the behaviour of the compiler
aremade far easier to develop. This section has given a brief summary of the important
design features ofLLVM’s intermediate representation,which is referenced throughout
the remainder of this thesis.

3.3 Recognizing Programs with CAnDL

The CAnDL domain-specific language [12] is designed to describe patterns in LLVM IR
programs; for example, the natural-language specification “an add i32 instruction
where both operands are the same value” can be expressed precisely in CAnDL. From
these descriptions, an SMT5-like constraint solver can be used to efficiently search for
regions of code that satisfy the pattern.

This section provides a brief introduction to the relevant features and usage of
CAnDL as it is used in this thesis, and presents in detail a technique to generalise a
set of similar LLVM IR programs into a CAnDL program that describes their common
features.

3.3.1 Introduction

In its original presentation, Ginsbach et al. [12] motivate CAnDL as a tool for sim-
plifying traditional detect-and-replace compiler analyses. For example, they suggest a
floating point optimisation based on the following equality:

√
G ∗ G = |G | (3.1)

That is, calls to the sqrt functionwhere the argument is a valuemultiplied by itself
could validly be replaced with a single call to the abs function. Detecting this pattern

5Satisfiability Modulo Theories; an extension of boolean SAT-solving techniques to a broader set of
theories, such as integer arithmetic or bounded arrays.
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Constraint SqrtOfSquare (

opcode{sqrt_call} = call

∧ {sqrt_call}.args[0] = {sqrt_fn}
∧ function_name{sqrt_fn} = sqrt
∧ {sqrt_call}.args[1] = {square}
∧ opcode{square} = fmul
∧ {square}.args[0] = {a}
∧ {square}.args[1] = {a}

) End

{

"sqrt_call": "%8",

"square": "%5",

"a": "%0"

}

Figure 3.2: CAnDL constraint program that discovers code implementing the pattern
√
0 ∗ 0. Informally, the program can be read as “find call instructions where the

callee is @sqrt , and the single argument is the result of an fmul instruction with
the same value as both its arguments”. CAnDL compiles this constraint to an efficient
backtracking search procedure. The right hand side shows an example of a CAnDL
search result.

using handwritten compiler analyses is unwieldy; searching for satisfying values re-
quires multiple nested predicates and backtracking. CAnDL addresses this problem
by providing a high-level DSL, in which patterns can be described and searched for
with a common search procedure.

Ginsbach et al. [12] provide theCAnDLprogram in Figure 3.2 to search for instances
of this pattern in application code. When a successful match is found, variables in the
constraint program (e.g. {sqrt_call} ) are bound to concrete values in the LLVM IR
program. Each such key-value mapping describes a single instance of the underlying
CAnDL pattern in the code being searched.

For the purposes of this thesis, the precise mechanism by which CAnDL performs
its search is not important to discuss in detail; its implementation is treated as a black
box that produces matching instances (key-value mappings from variable names to IR
values) when given a CAnDL constraint and a program in LLVM IR.

3.3.2 Generating CAnDL

In their original presentation, Ginsbach et al. [12] demonstrate a library of handwrit-
ten CAnDL constraints that describe two types of compiler optimisation (traditional
peephole optimisations, and larger optimisations for graphics shader code). Doing so
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%0 %2 ret

2

1
1

Argument Relation Graph
define i32 @square(i32 %0) {

%2 = mul i32 %0, %0

ret i32 %2

}

LLVM IR

Figure 3.3: An LLVM IR program together with amultigraph abstracting the argument
relation over its IR values. Function parameters and returns are sources and sinks
respectively in the graph.

requires a programmer to implement a constraint program for every new pattern of
interest. This thesis instead aims to automatically generate CAnDLdescriptions from an
existing LLVM IR fragment, such that additional instances similar to it can be identified
in application code.

First, a graph-based abstraction of LLVM IR is defined. This representation permits
a mechanical conversion from LLVM IR programs into CAnDL constraints. However,
the constraints generated by doing so are too specific (onlymatching precisely the code
fromwhich they were originally generated). To address this issue, a genetic algorithm
that produces approximate matches between abstract IR graphs is introduced. This
algorithm allows for the common features between multiple similar or equivalent
implementations to be extracted.

By combining several synthesis results for the same problem (each of which has
slightly different structure) with graph-based approximation, a CAnDL constraint can
be obtained that includes themost important features of a computation. The remainder
of this section describes this technique in detail.

3.3.2.1 Graph Abstraction

The first step in generating CAnDL from an LLVM IR program is to define a graph
abstraction of that program; the CAnDL solving procedure is stated in its original form
over similar graphs. For a program %, define a graph � with vertices + and (labelled)
edges � as follows:

+ , {all LLVM IR values in %}

� , {(=, G, H) ∈ N×+ ×+ | G is the =th argument of H}

� , (+,�)

(3.2)
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As shorthand, define notation for edges in this multigraph structure:

G
=−→ H , (=, G, H) ∈ � (3.3)

Intuitively, this structure captures the data flow in the program by encoding the
argument relation between IR values. While CAnDL implements language constructs
to constrain control flow relationships, this encoding does not. Figure 3.3 shows a small
LLVM IR function together with the corresponding graph encoding; the value %0 is
connected to the value %1 with two edges to show that it is used as both instruction
arguments.

In the graph encoding, all appropriate metadata is retained for each LLVM value
(e.g. the graph contains the information that %2 is a mul instruction). This permits a
mechanical conversion from the graph structure to a textual CAnDLprogram: first, the
graph’s vertices are walked, and an opcode constraint is emitted for each one. Then,
the edges are traversed and the argument relation over the vertices is emitted. One
constraint is emitted for each vertex and edge in the graph.

Doing so produces a precise (but insensitive) set of CAnDL constraints that detect
exact matches of the original program. However, to capture a wider class of possible
programs that are functionally equivalent, the constraints must be relaxed.

3.3.2.2 Matching LLVM IR Fragments Together

To generate a constraint description that captures the common structure shared by a set
of functionally equivalent LLVM IR programs, their respective graph representations
must be matched together. Because the programs are functionally equivalent (i.e. they
share the same behaviour, but may have different structure), regions of their graph
representations that share similar structures are likely to represent the core algorithmic
intent of the functions. Conversely, graph regions with significantly different structure
are likely to be unrelated to the algorithmic intent.

First, a combined graph is created from a set of LLVM IR programs by directly
combining their vertices and edges; by construction the graph regions corresponding
to different functions are totally disjoint (there are no edges between vertices that
belong to different functions). Next, an equivalence relation ∼ over the vertices in this
combined graph is defined; this relation partitions the vertices into a set of equivalence
classes +/∼. Ideally, vertices corresponding to the same behaviour across the set of
programs will be grouped into the same equivalence class.

The usual notation (D̄) is used for the set of vertices equivalent to D:

D̄ , {E ∈ + | D ∼ E} (3.4)
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Then,write Ḡ
=−→ H̄when the following conditions are both satisfied on the combined

graph:

∀0 ∈ Ḡ . ∃1 ∈ H̄ . 0 =−→ 1

∀1 ∈ Ḡ . ∃0 ∈ H̄ . 0 =−→ 1
(3.5)

These properties ensure that each instruction in class Ḡ is the =th argument of an
instruction in H̄, and for each instruction in H̄, the =th argument is in Ḡ.

3.3.2.2.1 Deriving An Optimisation Target To identify the “most equivalent” re-
gions of the graphs that have been combined (i.e. those regions with the greatest
conserved substructure), a metric to rank candidate equivalence relations must be de-
fined. This metric enforces several intuitive properties of the “best” relations. Firstly,
instructions that share an equivalence class should have the same opcode:

0 ∼ 1 =⇒ >?(0) = >?(1) (3.6)

Secondly, the argument relationship should be preserved when vertices are parti-
tioned into equivalence classes:

G
=−→ H =⇒ Ḡ

=−→ H̄ (3.7)

Thirdly, the argument relation should not be transitively collapsed when nodes are
grouped into equivalence classes:

0
=−→ 1 =⇒ 0̄ ≠ 1̄

0
=−→ 2∧ 1 <−→ 2∧ 0̄ = 1̄ =⇒ 0 = 1∨= = <

(3.8)

Of course, fulfilling all three criteria precisely is only possible when all the relevant
graphs are in fact identical. Instead, an approximate result is the best possible outcome.
To rank these approximations using the properties defined in Equations (3.6) to (3.8),
a metric < is defined that measures how strictly the properties are adhered to (and
therefore punishes deviations from them):

<(∼) = (?1·
��+/∼�� (3.9)

+?2·
��{E ∈ +/∼| ∃G, H ∈ Ē : >?(G) ≠ >?(H)}

�� (3.10)

+?3·
���{Ē ∈ +/∼| ∃H ∈ Ē , G, = : G

=−→ H∧¬Ḡ =−→ H̄)}
��� (3.11)

+?4·
��{Ē ∈ +/∼| third conditions not satisfied}

��)−?5 (3.12)

The first parameter controls how much the equivalence relation is encouraged to
merge vertices together into larger equivalence classes. Then, the next three parameters
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control how strictly each property is enforced. The fifth parameter is simply used to
change the distribution of the resulting scores, without changing their relative order.
By trial and error, the following values were assigned to each of the parameters:
?1 = 1.0, ?2 = 0.5, ?3 = 0.5, ?4 = 0.5.

Once this metric is defined, the best possible matching between constraint graphs
can be obtained by maximising the value of <. To do so, a simple genetic algorithm
is used; from the initial combined graph (i.e. the trivial partition), mutations are
applied that alter the partition structure. At a high level, three possible mutations can
be applied. First, equivalence classes can be separated into their constituent parts,
asserting that the nodes in that class are no longer equivalent. Conversely, two classes
can bemerged into a larger class to assert the equivalence of the nodes in those classes.
Finally, to establish the structure of the argument relation, nodes with incoming edges
to an equivalence class can be fixed together into a class (that is, if nodes 0 and 1 satisfy
0
=−→ G0∧1

=−→ G1 for some =, G0 , G1 with G0 ∼ G1, they are moved to a new class such that
0 ∼ 1).

These possible mutations are applied iteratively from the trivial partition; at each
step a new population of partitions is produced. This population is ranked according
to howwell each of its elements satisfies<. Then, new elements are selected randomly
in proportion to their scores. Finally, the best-scoring element of the final population
is returned as the “correct” partition.

3.3.2.3 Generating Constraints from a Matching

To emit a constraint program from the generated equivalence relation, it must be
mapped back onto a graph with the correct structure. To do so, a new graph �/∼ is
defined as:

�/∼ , (+/∼, �/∼) (3.13)

That is, the new graph has vertices corresponding to equivalence classes in the
highest-scoring partition. The edges of this graph are defined by the following prop-
erty:

(=, 0̄, 1̄) ∈ �/∼ iff 0̄
=−→ 1̄ (3.14)

Intuitively, this new graph encodes the argument relation between equivalence
classes; if there are consistently numbered edges between the elements of two equiva-
lence classes, then there is an edge between those classes in the new graph.

Finally, this graph must be processed further to ensure that it adequately captures
the shared structure of the individual graphs used to generate it. To do so, a threshold
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3 is defined, and all equivalence classes with fewer than 3 elements are removed. As
used in this thesis, 3 is defined as the number of functions used to generate the original
graph. In effect, this removes nodes for which no equivalent behaviour in other graphs
could be identified, leaving the essential structure of the shared algorithmic skeleton
intact.

After the thresholding operation has been applied, the mechanical constraint emis-
sion process can be run on the reduced graph to produce CAnDL constraints as before.

3.3.2.3.1 Example Consider the example in Figure 3.4. At the top of the figure, two
simplified6 pieces of LLVM IR code from different loop bodies are shown. The first
is from the body of a loop that computes the dot product of two vectors given as
pointers, while the second is from the innermost loop of a naive matrix multiplication
kernel. They are successfully matched together with the graph matching algorithm
introduced previously, producing a set of equivalence classes (shown in the middle of
the figure after discarding those with fewer than two elements).

Finally, constraints are generated mechanically. Features that were specific to one
programare discarded; notably, the instructions %dot , %acc , and the store instruction
as seen in Figure 3.4. These constraints can nowbeused to find equivalent code sections
(i.e. dot products) in other application source code [112].

6Control flow, surrounding context and types are omitted, and some syntax is shortened for the
purposes of the figure.
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%dot = load %dot.addr

%1 = getelementptr %A, %n

%2 = load %1

%3 = getelementptr %B, %n

%4 = load %3

%5 = fmul %2, %4

%6 = fadd %dot, %5

store %6, %dot.addr

Implementation 1

%acc = phi %acc.fst, %11

%7 = getelementptr @A, %k, %i

%8 = getelementptr @B, %j, %k

%9 = load %7

%10 = load %8

%11 = fmul %9, %10

%12 = fadd %acc, %11

Implementation 2

+0 , { %1, %7 } +1 , { %2, %9 }

+2 , { %3, %8 } +3 , { %4, %10 }

+4 , { %5, %11 } +5 , { %6, %12 }

Equivalence Classes

Constraint generated (

opcode{v0} = gep

∧ opcode{v1} = load ∧ {v1}.args[0] = {v0}
∧ opcode{v2} = gep
∧ opcode{v3} = load ∧ {v3}.args[0] = {v2}
∧ opcode{v4} = fmul
∧ {v4}.args[0] = {v1} ∧ {v4}.args[1] = {v3}
∧ opcode{v5} = fadd ∧ {v5}.args[1] = {v4}

End

Generated CAnDL

Match
Match

Generate

Figure 3.4: Example showing how general CAnDL constraints can be generated from
multiple similar LLVM IR functions. The top two boxes show abbreviated LLVM IR
code for two implementations of a dot-product function. These implementations are
matched together to produce the six equivalence classes in the center of the figure; all
other values form single-element equivalence classes and are discarded. From these
classes, the CAnDL constraints at the bottom of the figure can be generated.
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3.4 Program Synthesis

Removing (or decreasing) the need for human programmers by allowing computers
to write their own programs has been an explicit goal of computer science researchers
as far back as the 1960s [116]. If a program can somehow be automatically constructed
to meet a specification, then there should be no bugs in that program, and no need
for it to be developed by a human programmer. Of course, the problem statement
drastically understates the difficulty of doing so: even in extremely limited contexts,
the number of potential programs is infinite, and identifying correct examples from
that space is computationally intractable.

Because of this difficulty, synthesis research typically entails the identification of a
simplifying assumption or contextualisation of a problem; if some aspect of a problem
statement can be leveraged to reduce the size of the underlying search space, then
synthesis can often become a tractable problem. Doing so for larger andmore complex
problems, while using fewer resources (e.g. time,memory, or humanuser intervention)
and being more general in expression is the core of modern synthesis research.

This section first lists the terminology common to synthesis research that the re-
mainder of this thesis assumes a working knowledge of. Then, a brief overview of
the primary techniques and applications of synthesis research is given, with particular
emphasis on how these approaches scale to attack more complex problems.

3.4.1 Terminology

Program synthesis is a long-standing, well-studied field in the literature, and so a rich
vocabulary of terms pertaining to synthesis has evolved over time. Occasionally, these
terms become overloaded across publications and implementations; for the sake of
disambiguation this section gives a high-level description of program synthesis with
the terms used in this thesis. Places in the text where a citation’s use of vocabulary
diverges from this will be identified explicitly, but discussed in the language of this
thesis.

Program In the context of synthesis, the definition of a program can be interpreted
very broadly. While much of the literature deals with general-purpose, Turing-
complete languages, other work often deals with domain-specific languages that
are designed to solve specific classes of problem (such as network protocol design
[117], identifying solutions to logic puzzles [54], or shared-memory consistency
models [53]). Generally, the only common definition is the association of a
semantics with syntax trees over a language.
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Specification Synthesis relies on being able to determine whether or not a program
is correct or not. The set of rules by which this correctness can be checked are a
specification. Similarly to the language in which programs are expressed, many
different types of specification are possible. In some cases, SAT solvers or formal
proofs can be used to demonstrate that a program definitely satisfies a logical
assertion, while in other languages the best possible approach is to interpret a
program and examine its behaviour against a set of test cases. Specifications
typically involve some degree of meta-theory in their statement (e.g. if a problem
specification were to require the synthesis of an integer addition function, the
specification meta-theory might involve a definition of + :N→N).

Hint / Help / Information For many synthesis problems, it is possible for the hu-
man user interacting with the synthesiser to provide additional information that
guides the synthesiser’s search process. This information typically does not fully
specifywhether a solution is correct, but constrains the likely structure of a correct
solution. For example, when synthesising programs in a functional language,
a hint might state that particular functions are likely to appear somewhere in a
correct solution.

Problem & Solution The task of transforming a particular problem specification into
a program is a synthesis problem; a correct program produced by doing so is a
solution. Evaluating the success of a synthesiser typically entails attempting a
known set of problems and recording whether or not a solution could be found
for each one.

Search Space The set of all possible programs expressible in a language (modulo
any problem-specific constraints) is the search space over which a synthesiser
operates. Typically, the size of this set is very large and so well-chosen heuristics
or search algorithms are required to identify correct solutions from it.

Oracle For some classes of synthesis problem, it may not be possible to fully elaborate
their specification before synthesis begins (for example, if there are an infinite
number of rules a program may or may not satisfy). In these cases, the problem
statement often provides for an oracle, an abstract object that responds to queries
by providing further details of the relevant specification. For example, an oracle
might provide ground truth input-output pairs a solution must satisfy, or could
provide a falsifying counterexample if shown a potential solution. The taxonomy
of potential oracles is broad, and provides for the statement of many different
types of problem [50, 118].
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Reference & Target In some synthesis problems, the specification states that a solu-
tion should re-implement precisely the behaviour of some other system. The
system whose behaviour should be re-implemented is referred to as a reference

implementation or target for synthesis.

3.4.2 Overview of Synthesis

Chapters 4 to 7 describe three approaches to program synthesis, that share several
common design choices. This section gives a brief overview of the contextual factors
that lead to these design choices, and a comparison to the techniques associated with
the counterfactual choices.

Broadly, program synthesis techniques can be divided into two categories: induc-
tive or deductive. Under deductive synthesis, the specification for a program can be
transformed by a sequence of deterministic steps into precisely that program. Perhaps
the most widely used example of deductive synthesis in practice is in mechanised for-
mal verification, where certain logical statements can be proved automatically. While
some deductive synthesis contexts entail intractably large search trees, all can be solved
through the application of rules. This is not the case for inductive synthesis, where
a solution program must be induced from scratch to satisfy a specification. There are
no specific deduction rules available, and the exact mechanism by which a solution is
constructed may not be deterministic. Inductive synthesis is the most common style
of synthesis: typically, real-world scenarios do not admit clear derivations. The target
functions examined in this thesis are no exception, and so this thesis deals entirely
with inductive synthesis.

Within inductive synthesis, a subdivision canbedrawnbetweenproblems specified
entirely by a list of examples (programming by example, or PBE) and all other problems
with more universal specifications (generally, that a property holds for all solutions,
rather than pointwise specification via examples). Typically, PBE problems arisewhere
the goal of synthesis is tomatch user intent through handwritten examples, or tomimic
the behaviour of some existing system of unknown construction. In scenarios where
the aim of synthesis is to have solutions satisfy abstract properties, the specification
usually admits stronger verification procedures. In this thesis, the PBE scenario arises
naturally for two reasons: the shared aim of the work in Chapters 4 to 7 is to match
the behaviour of existing components, and the synthesised functions that do so do not
admit formal verification techniques (that is, verifying abstract properties would be
difficult even if those properties could be stated).

Now considering only PBE synthesis problems, a further distinction exists be-
tween systems that exploit the structure of the examples they are given (for example,
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by expecting a human user to supply meaningful examples, or by having maximal
counterexamples be generated by an oracle of some kind), and those where examples
are cheap but have no inherent structure. This thesis falls squarely into the second
division; in mimicking the behaviour of existing components, many examples can be
generated, but with no particular structure.

Finally, in some synthesis contexts the correctness specification is not the only avail-
able specification: there may be other constraints on a solution’s structure that do
not uniquely specify a solution on their own, but can be used to accelerate synthesis
somehow. For each of the approaches in Chapters 4 to 7, this is the case. This last
decision neatly summarises the flavour of synthesis described in this thesis: inductive
synthesis, uniquely specified only by a set of cheaply-obtainable examples, but with
rich non-correctness specifications available.

3.5 A Sketch Language

Perhaps the most common type of hint given to program synthesisers is a sketch:
a high-level, partial program structure to which low-level details can be added to
produce a working program. This idea is language-agnostic, and can be instantiated
in different ways depending on the output language of a particular synthesiser. This
section introduces a sketching framework shared between the synthesis approaches in
Chapters 4 to 7, and is structured as follows. First, a brief overview of general sketch-
based synthesis is given. Then, the design of a flexible, sketch-enabled language
for synthesising imperative programs is presented. Finally, the compilation of this
language to LLVM IR (to enable integration with compiler tooling as suggested in
Section 3.2) is demonstrated, along with a high-level overview of how search-based
synthesis can be used to instantiate correct programs from sketches.

3.5.1 Sketching

In sketching program synthesis, the synthesiser begins with a partial structure
for solutions; by doing so, high-level insights from the programmer or user can be
combined with low-level implementation details better suited to an automated pro-
cedure [60, 61]. An example of this is shown for a C-like language in Figure 3.5,
where incomplete details of a program’s low-level operation are filled in by a synthesis
procedure.
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1 int sketch(

2 int n, int *xs, int *ys)

3 {

4 int r = ??;

5 while (??) {

6 {?}

7 }

8 return r;

9 }

int solution(

int n, int *xs, int *ys)

{

int r = 0;

while(--n > 0) {

r = r + xs[n] + ys[n];

}

return r;

}

Figure 3.5: A sketch (left) and potential solution (right) to a synthesis problem with
the informal specification “sum all the elements in two arrays with the same length”.
In the sketch, only high-level details are provided: the presence of a loop of some kind,
and a return value of the correct type that is initialised at the top of the function. All
other elements of the program are left incomplete (as ?? markers). When instantiated
to a solution, lower-level implementation details such as the loop condition and initial
value of r are filled in.

3.5.1.1 Holes

In Figure 3.5, the most important feature of sketching is demonstrated: the presence
of holes in the partial program. Holes are sub-trees of a program’s abstract syntax tree
(AST) with no concrete value, such that replacing a hole with a valid AST fragment
produces a valid program; another way to frame the abstraction is that a program
with holes represents the set of all possible programs sharing the same concrete AST
section as the sketch. For example, in Figure 3.5, instantiating the hole on line 4 as
int r = n * n; would also produce a program belonging to the same set as the
solution on the right-hand side (albeit one not meeting the original specification).

Holes can be treated differently depending on the underlying host language to
which they have been added, and the requirements of their application. In some cases,
it is possible to create a well-defined semantics by which programs with holes may be
interpreted (for example, by keeping track of holes as closure environments as they are
executed as far as possible [119]). Other applications only require that programs with
holes can be manipulated while preserving the validity of the AST (e.g. in Figure 3.5,
the hole on line 4 should not become int r = float; ).



3.5. A Sketch Language 39

3.5.1.2 Two-Phase Synthesis

Originally, sketches were presented as a way for the programmer to express their high-
level knowledge of a potential solution. However, as the methodology evolved, syn-
thesisers began to demonstrate two-phase techniques whereby likely program sketches
are identified automatically by an initial synthesis phase, then instantiated as they
would be in a traditional method. For example, Wang et al. [62] search for abstract
SQL queries (sketches) that would over-approximate the results for a specification (i.e.
return a superset of the required output), then filter these sketches by constraining the
predicates within them.

This style of two-phase synthesis encodes two key ideas: firstly, that some ap-
proximation to a hypothetical user’s intent can often be identified through search, and
secondly, that splitting synthesis intomultiple searches at different levels of abstraction
can reduce the size of the relevant search space. Returning to Scythe [62], searching
first for query over-approximations, then for predicates produces an exponential re-
duction in the size of the total search space.

As a rough argument for why this is the case, consider a language with � AST
constructors (node types), and a program sketch with # holes to be instantiated.
There are $(�# ) possible programs that could result from this instantiation. Now, the
search process could be split into two parts: first, a search for sketches that permits
2� � AST constructors at each of the# holes, producing ? sketches with =� # holes,
and secondly, a search through those sketches for correct programs as before. The size
of the resulting search space is $(2# + ?�=), which is ∈ $(�# ).

Reducing search spaces through this type of two-phase method does require a
suitablemethod to search for sketches (e.g. rejecting provably invalid sketches, or using
user information as an incomplete prior on what sketches should be considered). The
remainder of this section describes the implementation of a sketch language designed
to support general two-phase synthesis methods, as well as to integrate well with
compiler tooling as suggested in Section 3.2.

3.5.2 Fragments

In many two-phase sketching synthesisers, sketches are designed to be built from
combinations of smaller atomic elements. For example, the DeepCoder system [79]
identifies sketches (roughly) as compositions of individual functions and combinators;
similarly, Scythe composes well-formed SQL query elements into abstract queries.
Composing sketches from smaller parts in this way means that fine-grained analyses
can be made of the individual components, an easier problem than attempting to
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{

?T0 v0 = ??;

?T1 v1 = ??;

?T2 v2 = ??;

{?}

}

Block

while (true) {

{?}

int x = ??;

}

Infinite Loop
if (??) {

{?}

} else {

{?}

}

If-Else

Figure 3.6: Three examples of simple imperative program fragments, given in the
syntax of a C-like pseudocode. In this syntax, {?} represents a fragment hole (a point
at which another fragment could be nested), while ?? represents a computation hole
(a point at which a value should be chosen to produce a concrete program). Types
for computation holes may either be fixed ( int ) or left unknown until a later stage of
synthesis ( ?T0 , ?T1 , etc.).

evaluate entire sketches (e.g. DeepCoder evaluates whether or not individual functions
such as map are present in a potential solution).

Often, synthesisers for imperative languages suchasSimpl [70] instead treat sketches
as indivisible skeletons intowhich computations can be inserted. To support these twin
goals (two-phase synthesis and eventual support for imperative languages to facilitate
compiler integrations), a system for describing atomic, composable components of im-
perative programs is required. This thesis defines a language of fragments to implement
sketch-based synthesis of imperative programs.

3.5.2.1 Definitions

At a high level, a fragment is simply a region of imperative code that can contain
two kinds of hole (fragment and computation, respectively). Distinguishing two kinds of
hole is a convenient mechanism to enable two-phase synthesis. Only another fragment
can be used to instantiate a fragment hole, which preserves computation holes to be
instantiated by a subsequent synthesis mechanism that takes a sketch as input (see
Figure 3.6). For clarity, fragments are listed as C-like pseudocode when they are
presented in this thesis; using this notation, Figure 3.6 shows some possible examples
of fragments.

The fragments in Figure 3.6 have no free variables (that is, when written as code
they do not reference any variables not defined in the fragment itself). This means
that while they can always be combinedwith other fragments while avoiding syntactic
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�AA0H!>>? C ? =

for (int i = 0; i < =; ++i) {

C v0 = ?[i];

?T1 v1 = ??;

{?}

}

Array Loop Template

Figure 3.7: Example of a fragment template definition. Parameters passed to the
template function are inserted into the fragment body at the appropriate places (dis-
tinguished here in italic type). The resulting fragment has a single computation hole
of unknown type, as well as a fragment hole.

clashes or ambiguity, they are not modular or usefully reusable. To address this, the
remainder of this thesis deals largely with fragment templates, defined as arbitrary
functions onto the set Frag of all possible fragments.

For example, consider the informal fragment description “a loop over the elements
of an array with a known size”. To properly express this as a fragment, three pieces
of information are required: the type of element stored in the array, a pointer to the
array, and the size of the array as an integer. The array-loop fragment template can
therefore be understood informally as a dependent function (where � is the set of types
understood by the fragment system, and★ is the “pointer to” postfix type constructor):

�AA0H!>>? : (C : �) → C★→N→ Frag (3.15)

In Figure 3.7, a possible definition for the�AA0H!>>? fragment template in terms of
these parameters is shown. Generally, in the rest of this thesis, fragments and fragment
templates are treated equivalently for the sake of clarity; cases where an issue arises
from doing so are noted explicitly.

3.5.3 Compilation and Search

Fragments as discussed so far are abstract objects; they can be named and instantiated
from a template (e.g. �AA0H!>>? as shown in Figure 3.7). While it is convenient to
show fragments as pseudocode in a hypothetical C-like language, this representation
does not actually exist; instead, the semantics of any given fragment are defined by
a compilation function that produces a concrete program in an extended dialect of
LLVM IR from that fragment.

The compilation function is total (i.e. any fragment can always be compiled to
LLVM, with no exceptions). For L

+ the set of programs in the language targeted by
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compilation:

2><?8;4 : Frag→ L
+ (3.16)

Compiling a fragment produces an LLVM IR program, but onewith computational
holes. The pseudocode shown in Figures 3.6 and 3.7 can be seen as demonstrating
where these holes will be located in the eventual compiled IR, rather than as holes with
specific semantics in the C-like pseudocode language. An extended dialect of LLVM
(L+) is required to support these holes. The semantics and implementation of this
dialect are given in Section 3.6.1, and are treated at a high level in this section.

Because fragments contain syntactic holes after being compiled, they must then
be instantiated with concrete values by another synthesis procedure; the role of the
sketch framework ends at compilation. In the remainder of this thesis, the holes
in compiled fragments are filled by search-based synthesis procedures, but there is
no hard requirement for this to be the case; other mechanisms such as interactive
programming [119] or SAT-solving [74] could be used to instantiate holes in different
problem contexts.

3.5.4 Compositionality

The ultimate goal of fragments as defined in this section is to be composed together
into a larger sketch, but the mechanism by which this occurs has as yet only been
alluded to (in the form of fragment holes {?} ). This section explains the process of
composition between fragments, and how larger sketches can be constructed by doing
so.

Two requirements are placed on the compiled code generated by fragment im-
plementations for them to be valid components of sketches: firstly, their compiled
control flow must be single-entry, single-exit. This means that when control enters a
fragment, it proceeds unambiguously through that fragment until the exit. Secondly,
if a fragment contains a fragment hole, it must be possible to specify the compilation
of that fragment even if the hole is never instantiated (that is, filling a fragment hole is
optional).

If both of these requirements are met, then a composition operator ◦ can be defined
between two fragments:

_◦_ : Frag→ Frag→ Frag (3.17)

The composition operator highlights a key point of the fragment-based sketching
process: the composition of two fragments is itself a fragment, and so must be subject
to the same requirements and operations as the fragments that it was created from.
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Because of this, arbitrary compositions of fragments can be created and compiled to
LLVM IR by consumers of the sketching framework. No details about the specific types
of fragment involved are necessary, allowing the consumers to be fully abstract when
constructing sketches.

Individual fragment semantics are fully specified (for a fragment 5 ) by providing
definitions for the following operations:

2><?8;4 5 : L
+

5 ◦_ : Frag→ Frag

(3.18)

3.5.4.1 Example

As an example, first consider a fragment skip : Frag. Intuitively, this fragment is the
“do nothing” unit element for control flow. To give it a useful semantics, definitions
for 2><?8;4 and 2><?>B4 must be given.7 A possible definition for skip is:

compile(B:8?) , {}

B:8? ◦ 5 ′ , 5 ′
(3.19)

This is intuitive: compiling B:8? produces an empty statement that has no effect
when executed, and composing it with any other fragment 5 ′ yields 5 ′. As a more
complex example, consider a fragment template fixed-loop : N→ Frag. This template
represents a loop with a fixed number of iterations (specified by the template parame-
ter); the body of the loop is established through composition. Variants of this fragment
are used in Chapters 4 to 7.

Writing down a definition for 5 8G43-;>>? is more difficult than for B:8?. The
intuitive action of composition on such a loop structure is for the body of the loop to
be instantiated with the second fragment. However, the result of doing so must also
be a fragment. To define this composition, an auxiliary fragment is defined:

2><?8;4( 5 8G43-;>>?(=)) , for(int i=0; i<=; ++i) {}

5 8G43-;>>?(=) ◦ 5 , 5 8G43-;>>?(=) 5
(3.20)

This auxiliary fragment defines both its compilation and composition recursively
using the child fragment 5 :

2><?8;4( 5 8G43-;>>?(=) 5 ) , for(int i=0; i<=; ++i) {2><?8;4( 5 )}

5 8G43-;>>?(=) 5 ◦ 5 ′ , 5 8G43-;>>?(=) 5 ◦ 5 ′
(3.21)

Recursive definitions of this sort are common to many fragment definitions, and
allow for potentially large trees of fragments to be constructed, while only requiring

7For the sakeof notational convenience, definitions for 2><?8;4 in this section targetC-likepseudocode.



44 Chapter 3. Technical Background

each individual fragment to define its local composition and compilation effects. Sec-
tion 3.6.2 gives details on how these operations are implemented in practice for real
fragment definitions.

3.5.5 Summary

This section has presented an abstract definition for a language of fragments, which
can be arbitrarily composed to form larger, more complex sketches. By providing
definitions for two operations (compilation to a dialect of LLVM IR and composition
with another fragment), a range of imperative code structures can be implemented
independently of other fragment definitions. Next, in Section 3.6, the implementation
details of this scheme are discussed.

Computational holes provide the interface between the sketch language and on-
ward synthesis methods: by specifying points within a fragment’s definition where
program values should be computed, a compiled sketch can be handed to an external
solver or search procedure for instantiation into an executable program.

3.6 Implementation Details

Previously, Section 3.5 described (in an abstract sense) the definition of a generic frag-
ment language that can beused by applications to build program sketches; applications
provide their own fragment implementations and take advantage of the genericity of
the underlying framework to compose and compile them into sketches.

Compiled fragments and program sketches are programs in an extended dialect of
LLVMIR that supports holes. By includingholes, programs in thisdialect canbehanded
to an external solver or searchprocedure that is responsible for selecting concrete values
for those holes. This provides a clean interface and separation of concerns between
different phases in synthesiser implementations; each of the synthesisers in Chapters 4
to 7 relies on this interface between their identification of program sketches and search
for candidate solutions.

This section explains the underlying implementation details used throughout the
rest of this thesis. First, the extended LLVM IR dialect targeted by fragment compi-
lation is defined, along with the additional operations required to safely manipulate
the holes within its programs. Then, the mechanism by which concrete fragments
are implemented is defined. Once an external procedure instantiates the holes in a
program sketch, it can be executed. The shared infrastructure to execute and test these
compiled programs as part of a synthesis workflow is detailed. Finally, an overview of
related implementation details and other associated boilerplate code is given.



3.6. Implementation Details 45

%v1 = add i32 %0, 1

%v2 = call i32 @hole.0()

%v3 = add i32 %v1, %v2

Known Type

%v1 = add i32 %0, 1

%v2 = call %hole.t @hole.1()

%v3 = call i32 @add(%v1, %v2)

Unknown Type

Figure 3.8: Two abbreviated portions of LLVM IR code that contain hole values, en-
coded as calls to special functions with no definition. On the left, the hole value’s type
is known ahead of time, while on the right it has unknown type and so is assigned a
placeholder type. When operating on values of unknown type, special stand-in func-
tions take the place of LLVM’s usual instructions, and the RAUW primitive operation
must be extended to handle type assignment.

3.6.1 Augmenting LLVM IR with Holes

Previously, in Section 3.5, a dialect of LLVM IR that supports holeswas discussed as
the target for fragment compilation. In the context of LLVM IR, a hole is an SSA value
whose exact run-time value is not yet known. Holes can be referenced as if they were
first-class LLVM values by other instructions, but a program containing them cannot
be compiled or executed without instantiating each hole with a concrete value.

Figure 3.8 demonstrates the encoding of holes used in this dialect. Each hole is
represented by a call to a function with no definition (that is treated as though it
might return nondeterministic values); the values produced by these calls can have
their types identified ahead of time (e.g. i32 on the left hand side of the figure), or
can have unknown types. Leaving hole types unknown is necessary to support fully-
generic fragment implementations that can operate data of many different types, and
be composed within multiple different parent fragments.

LLVM IR was not designed to support values with unknown types, and so sev-
eral problems arise when attempting to construct programs that contain holes. The
solutions to these problems lead naturally to the encoding of holes demonstrated in
Figure 3.8; in the remainder of this section, each of these problems is introduced, and
the solution explained.

3.6.1.1 Basic Encoding

To encode and keep track of symbolic placeholders (holes) in an LLVM program,
concrete SSA program values need to be created to represent those holes. So that
they can be easily distinguished from “normal” values, holes are encoded as calls to
functions with no definition (i.e. they only have a declaration), and a distinguished
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naming convention.
An example of this encoding is shown on the left-hand side of Figure 3.8: the value

%v2 is a hole, and can be identified as such by the target of the LLVM call instruction
that it is generated by.

3.6.1.2 Static Typing

The first problem with this encoding is that all values in LLVM IR must be explicitly
annotated with their type. However, for holes, their type may not be known ahead
of time (so as to allow fragments to implement type-generic abstract operations). Ad-
dressing this problem is one of the key design choices when designing languages with
support for holes; for example, the Hazel [119] interactive programming environment
allows for expressions to be typedwith incomplete types that themselves contain holes.

In LLVM, however, explicit type annotations mean that a concrete type must be
selected for each value when it is created. To do so, a type-level analogue to the value-
level hole encoding is used. A distinguished hole type is created, and assigned as the
type for any hole whose type is not constrained ahead of time by its parent fragment.
Returning to the example in Figure 3.8, the value %v2 on the right-hand side has
type %hole.t ; a unique, opaque type guaranteed to be unused anywhere else in the
program.

Adifferent non-deterministic, definitionless function is created for eachunique type
of hole in a program. For example, in Figure 3.8, the functions @hole.0 and @hole.1
correspond to holes of type i32 and unknown type ( %hole.t ) respectively.

3.6.1.3 Operations on Values

While encoding unknown types as a single global unique type allows for values of
notionally unknown type to be encoded, doing so once again introduces problems to
the core LLVM IR language. In LLVM, instructions (such as add , load , or fmul )
can only be applied to built-in types; there is no mechanism to add two values of type
%hole.t , for example.

This means that if holes have unknown type, then instructions that use them as
arguments cannot be created. However, fragments may wish to do so. For example,
a fragment representing an elementwise in-place mutation of an array might wish
to include a store instruction in every instantiation. If the value to be stored has
unknown type, this is not possible.

To address this issue, an additional set of special LLVM IR functions is defined.
Each of these functions represents an individual LLVM opcode, but with unspecified
argument types. As an example, compare the values named %v3 on each side of
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Figure 3.8. On the left-hand side, both arguments are of the same type ( i32 ), and so
an add instruction is valid. However, on the right, %v2 has unknown type, and so
a call to the special function @add is made instead. Because one argument is of type
i32 , the return type of the call can be inferred. If both arguments were of unknown
type, the return type would be as well.

Analogous special functions are defined for all LLVM opcodes, such that any
valid program can be lifted into the “unknown type” domain by making calls as in
Figure 3.8. The sketching and fragment framework has one final role to play after
holes are instantiated by an external procedure: calls to the special opcode functions
are type-checked, and resolved by replacing them by actual instructions.

3.6.1.4 Assigning Types

One final problem arises from the encoding of instructions as special functions:
from the perspective of the underlying program, some values may appear to change

type when holes are instantiated. This is a fundamental property of holes as they
are designed in the language extension; if a concrete value is assigned to a hole with
previously unknown type, that value must have a type, and so the hole’s apparent
type must somehow change. As discussed previously, LLVM IR is statically typed,
and so the type of any value can never actually change. To implement a mechanism to
allow holes and special functions to appear do so, a new IR manipulation primitive is
required.

In traditional LLVM IR, the replace-all-uses-with primitive (RAUW) is one of the
fundamental operations for modifying programs. It replaces a value with another
value of the same type, ensuring that all subsequent uses of the original value then
refer to the new value.

To allow holes to appear to change type, a new primitive operation RAUW-NT
(New Type) is introduced. It extends RAUW by adding a new specialisation for holes
of unknown type; for these, the new value can have any type. Subsequent uses of the
original hole are checked for safety when doing so. For example, in Figure 3.9, the hole
value %v2 is used as an argument to the @add function (which returns i32 ). This
means that only types that can be safely added to i32 can be used to instantiate the
hole.

Implementing RAUW-NT is a two-phase process, both of which are shown in
Figure 3.9. First, new corresponding values are created alongside the original value
and all instructions that depend on it ( %v2.new , %v3.new ). Then, the entire depen-
dency graph for the old value is removed, and all types checked and special functions
resolved.
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%v1 = add i32 %0, 1

%v2 = call %hole.t @hole.1()

%v3 = call i32 @add(%v1, %v2)

Unknown Type

%v1 = add i32 %0, 1

%v2 = call %hole.t @hole.1()

%v2.new = call i32 @real_value()

%v3 = call i32 @add(%v1, %v2)

%v3.new = call i32 @add(%v1, %v2.new)

Intermediate

%v1 = add i32 %0, 1

%v2 = call i32 @real_value()

%v3 = add i32 %v1, %v2

Resolved

RAUW-NT

DCE

Resolve Types

Rename

Figure 3.9: An example of the intermediate step taken when assigning a concrete type
to a value of unknown type, using the RAUW-NT IR manipulation extension.
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Combining RAUW-NT and special functions that encode instructions can lead to
type information being propagated backwards as well as forwards in the program: if
one argument to a special function has its type instantiated, then any hole arguments
to that function have their eventual type constrained.

Implementing RAUW-NT requires that destructive modifications are made to the
program, and so it does not respect IR validity properties in the same way as LLVM’s
own internal operations do. Despite this, RAUW-NT preserves the validity of the IR
across calls (that is, any unsafe operations are kept inside the extension).

3.6.1.5 Summary

This section has demonstrated amodular, reusable abstraction formanipulating LLVM
IR programs that contain holes of potentially unknown type. Doing so in a type-safe,
robust manner requires a number of extensions to be made to the core LLVM libraries.
Crucially, the validity of an IR program manipulated by these extensions is preserved
between operations; any unsafe or invalid states are not exposed to the user.

While this thesis proposes search-based synthesis from program sketches as the
primary use case for these extensions, other applications would be enabled by the
addition of holes to LLVM IR. For example, interactive programming or expert-guided
micro-optimisations could be implemented by instantiating holes through a different
mechanism. Alternatively, a macro-based DSL for C-like languages could be used to
provide a higher-level interface to hole-based programming (i.e. a syntax more similar
to the examples of pseudocode in this chapter).

3.6.2 Fragment Implementations

In Section 3.5.4, the abstract definition for sketch fragments in terms of their fun-
damental operations (compilation to LLVM IR with holes, and composition with other
fragments). This section explains how these operations are implemented in practice,
andhow tools canprovide new fragment types compatiblewith the generic framework.

Fragment Implementation The mechanism provided for new fragment types to be
implemented and loaded is as C++ classes satisfying a specific virtual interface
(listed in Figure 3.10).

Composition The base_fragment::compose method specifies the semantics of each
individual fragment type under composition. Typically, this entails storing the
second fragment as a member variable so that it can be referenced during com-
pilation (in effect, building a tree of child fragments).
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1 class base_fragment {

2 virtual std::unique_ptr<base_fragment>

3 compose(std::unique_ptr<base_fragment> other) const = 0;

4

5 virtual llvm::BasicBlock* compile(

6 llvm::BasicBlock* entry) const = 0;

7 };

Figure 3.10: The interface that new fragment implementations should satisfy to be
compatible with the sketching framework. Composition creates a new fragment (con-
suming its argument; there is no sharing within the fragment tree), while compilation
accepts a basic block representing the entry point at which to attach the results of
compilation (fragments must have single-entry, single-exit control flow).

Compilation Because fragments must have single-entry, single-exit control flow, a
fragment hole {?} can be viewed logically as the exit of a single basic block.
If the hole is instantiated with a child fragment, then its control can exit to the
same point. Otherwise, control simply passes through the exit and continues.
Compilation can therefore be expressed as amethod that inserts additional LLVM
IR at the specified point.

All fragment types described throughout the remainder of this thesis are C++
classes implemented in this way. They are able to dynamically build trees of child
fragments, and compile to LLVM IR with holes at a specific entry point.

3.6.3 Execution & Testing

Aswell as the sketching and fragment-handlingmechanisms described previously, the
general framework shared by Chapters 4 to 7 contains utilities to handle the compila-
tion, execution and testing of sketches whose holes have been instantiated (in effect,
general LLVM IR programs). These utilities are largely boilerplate code, with little
bearing on the conceptual work carried out in each chapter. A brief summary of them
is as follows:

JIT Compilation By compiling instantiated sketches in-process, the overhead of writ-
ing code to a file and calling out to an external compiler can be avoided. As
well as enabling the analyses and tools below, this allows implementations that
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consume the general synthesis framework to more rapidly iterate over possible
sketches.

Safety & Bounds Checking Fragment implementations can opt in to a static bounds-
checking method when generating LLVM IR. If they do so, a shared, global limit
on the size of arrays that can be validly accessed by instantiated sketches is set.
Accesses outside this limit are safely caught without generating a signal, and
reported back to the calling code through an additional return value.

Type Safety When users construct or generate arguments to be passed to an instanti-
ated, compiled sketch, the framework is able to check the type of these arguments
to ensure they are compatible with the sketch.

Testing Ageneral test harness is provided to execute compiled sketcheswithgenerated
test data from the consuming application, observe the results and compare them
to a source of ground truth (either another sketch, a dynamically loaded symbol,
or a set of examples).

3.7 Summary

This chapter has presented the background technical details on which the main con-
tributions of this thesis are built. Section 3.2 introduced LLVM IR [8] as a way of
integrating synthesis and API migration with existing compiler workflows. Then,
Section 3.3 presents a previously-published tool for generalisation of constraint pat-
terns for code search (as implemented by Philip Ginsbach, a co-author of Collie et al.
[2]). With respect to program synthesis, Section 3.4 surveyed important terminology
from the literature to provide context for Sections 3.5 and 3.6, in which a sketch-based
synthesis framework was introduced. This framework is referred to throughout the
remainder of the thesis.





Chapter 4

Synthesising Performance-Critical

Functions with Type Annotations1

This chapter develops a program synthesis-based approach to the problems of legacy
code rejuvenation and performance portability. By using synthesis to automatically
model the behaviour of library functions, existing constraint-based code search tooling
can be used to efficiently discover compatible code

Because the interface of the targeted library functions is known, but their imple-
mentation is not, a domain-specific annotation and query language is used to formalise
interface properties that would be used informally by developers using the library. By
examining these properties, synthesis can be efficiently directed by heuristics towards
likely program sketches. This allows for the implementations of functions with com-
plex behaviour to be easily synthesised.

Synthesised functions are converted to general constraint descriptions using a novel
genetic algorithm. By doing so, boilerplate and irrelevant code can be safely discarded
while retaining key algorithmic structure.

An evaluation of this approach is carried out on widely-used scientific computing
and machine learning applications. For the most common performance bottleneck
functions in these applications, by synthesising implementations and matching them
against application code, refactorings can be correctly implemented that produced
speedups of up to 10×.

4.1 Introduction

Fast numerical libraries have been a cornerstone of scientific computing for decades
[120, 121]. They provide efficient implementations of key algorithmic components and

1This chapter is based on published research in Collie and O’Boyle [1], Collie et al. [2]
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allow a separation of concerns. This comes at a cost, however, as it may tie programs
into vendor-specific software ecosystems and results in non-portable, polluted code.
A new library API means that the original “vanilla” code has to be recovered, and then
modified to use the new libraries.

The risk of being tied into an out-of-date library API often leads developers to
release multiple versions of their code targeted at different underlying APIs (for ex-
ample, machine learning frameworks such as PyTorch [122] and Darknet [123] do so
to support a wide range of inference platforms). This requires the maintenance of
multiple code bases and complex build systems. However, the recent proliferation of
specialised hardware platforms and accelerators entails a similar effect on the number
of relevant library APIs [124, 125, 126, 127]. In the long-term, amulti-version code base
is not sustainable or economical to maintain.

This chapter develops an alternative approach: a compiler-based scheme that dis-
covers opportunities to use new accelerator libraries in user code, with little prior
knowledge of the libraries. Furthermore, it can recover behaviourally equivalent code
from programs that use existing libraries and automatically port them to new inter-
faces. In order to reduce developer burden, it attempts to minimise the level of manual
intervention required from users.

Program synthesis is a well studied area that deals with searching a program space
to find candidate programs that match a specification [67]. The implementation in
this chapter, Annote, uses a number of generic control-flow components and a set
of heuristics defining when they should be applied. These heuristics are driven by a
library’s type signature and lightweight annotations provided by the library vendor.
Crucially, these annotations are easily extracted from documentation and require no
knowledge of a library’s internals. Because the libraries targeted for recovery are
not adversarial in nature (that is, their structure is not deliberately obfuscated), these
interface annotations and heuristics are able to effectively capture the likely behaviours
of the library.

Once a library’s behaviour is known, the next step is to see if the developer’s
programhas structures thatmatch its behaviour. This can be achieved by automatically
describing the synthesised program as a set of constraints which can then be used to
search the application code. As the synthesised programmay not easilymatch existing
code, many equivalent versions are generated, then normalised and then generalised
to a common description that determines the most appropriate constraints. When a
match is found, a suggestion is made to the developer that replacement code could
take advantage of a different library.

The synthesis and constraint generation approach in this chapter allows large ex-
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isting code bases to be targeted, showing significant performance improvement. By
applying the approach to existing large applications from scientific computing and
deep learning written in C, C++ and Fortran, speedups ranging from 1.1× to over 10×
improvement can be demonstrated by applying suggested refactorings.

4.2 Motivating Example

To understand the motivation for the techniques described in this chapter, it is
useful to consider a motivating example from real code. Specifically, this section
illustrates how the approach helps in porting code that uses an existing library API to
a new library API with increased functionality.

Consider the code sample on the left of Listing 4.1. This is an inner loop taken from
a subroutine in NWChem [128], a widely used chemical simulation suite that makes
explicit calls to BLAS libraries. The code contains manual loops over arrays and calls
to BLAS routines ( dcopy and daxpy ). To improve performance, it may be profitable
to port this code to use Intel’s MKL libraries (as shown on the right hand side, which
makes use of the extended MKL functionality mkl_daxpby ).

At a high level, the code inListing 4.1 performs amixture of elementwise andvector-
wide operations on structures representing a system of molecules. In this section, for
exposition, the vector-wide operations are written equationally with names roughly
corresponding to the original variable names. Because no dependencies are carried
between the regions of code discussed in this way, the equational reasoning used is a
sound notation for the analyses and transformations performed. This is not necessarily
the case for general code; a more detailed discussion of when these assumptions break
down is given later in the chapter once an intuition has been established.

4.2.1 Original Intent

After the initial system state is established, on the left hand side of Listing 4.1, there
are two highlighted sections of code. The first of these is a loop that performs the
following abstract vector computation:

r3← (1− C3)r3 (4.1)

The second highlighted piece of code is a call to daxpy . If the underlying source code
for the function daxpy were available, it could be determined to perform the abstract
vector operation:

y← 0x+y (4.2)
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1 do i=1,nbeads2

2 t = (i-1)/dble(nbeads2-1)

3 j1 = t*(nbeads1-1) + 1

4 j2 = j1+1

5 t1 = (j1-1)/dble(nbeads1-1)

6 t2 = (j2-1)/dble(nbeads1-1)

7 t3 = (t-t1)/(t2-t1)

8 shift = (j1-1)*3*nion

9 call dcopy(

10 3*nion,dbl_mb(c(1)+shift),

11 1,dbl_mb(r1(1)),1)

12 call dcopy(

13 3*nion,dbl_mb(r1(1)),

14 1,dbl_mb(r3(1)),1)

15 do j=0,3*nion-1

16 dbl_mb(r3(1)+j) =

17 (1.0d0-t3) * dbl_mb(r3(1)+j)

18 end do

19 shift = (j2-1)*3*nion

20 call dcopy(

21 3*nion,dbl_mb(c(1)+shift),

22 1,dbl_mb(r2(1)),1)

23 call daxpy(

24 3*nion,t3,dbl_mb(r2(1)),

25 1,dbl_mb(r3(1)),1)

26 end do

do i=1,nbeads2

t = (i-1)/dble(nbeads2-1)

j1 = t*(nbeads1-1) + 1

j2 = j1+1

t1 = (j1-1)/dble(nbeads1-1)

t2 = (j2-1)/dble(nbeads1-1)

t3 = (t-t1)/(t2-t1)

shift = (j1-1)*3*nion

call dcopy(

3*nion,dbl_mb(c(1)+shift),

1,dbl_mb(r1(1)),1)

call dcopy(

3*nion,dbl_mb(r1(1)),

1,dbl_mb(r3(1)),1)

shift = (j2-1)*3*nion

call dcopy(

3*nion,dbl_mb(c(1)+shift),

1,dbl_mb(r2(1)),1)

call mkl_daxpby(

3*nion, t3,dbl_mb(r2(1)),1,

(1.0d0-t3),dbl_mb(r3(1)),1)

end do

do j=0,3*nion-1,1

dbl_mb(r3(1)+j) =

(1.0d0-t3) * dbl_mb(r3(1)+j)

end do

...

do j=0,3*nion-1,1

dbl_mb(r3(1)+j) =

t3*dbl_mb(r2(1)+j) + dbl_mb(r3(1)+j)

end do

Unchanged

Inlined

Replaced

Listing 4.1: Motivating example showing how code from NWChem can be inlined,
matched and refactored to take advantage of a new library interface. In the code on the
left, a manually written loop and BLAS library call are normalised by partial inlining
(bottom). Then, the inlined code is matched against the mkl_daxpby function and
replaced with a single call (right).
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Substituting in the parameters r3, C3 and r2 used in the example code to the equation
for daxpy produces:

r3← C3r2+ r3 (4.3)

The intent of the code (with respect to the vector r3 ) is made clear by these equations:
it is updated to reflect the proportionately scaled sum of two vectors. Equationally,
substituting the updated value of r3 from Equation (4.1) into Equation (4.3) yields:

r3← C3r2+(1− C3)r3 (4.4)

4.2.2 Updated Code

While daxpy is in the standard BLAS specification (and is therefore widely supported
by compliant implementations), vendor-specific libraries often implement an extended
set of functions. For example, when porting NWChem toMKL, an extended version of
the function ( daxpby ) is available [28]. This extended function performs an additional
vector scaling operation in addition to the work done by daxpy . Given equationally:

y← 0x+ 1y (4.5)

By substituting in parameters r3, r2, C3 and (1− C3) from the code in Listing 4.1, an
identical vector operation to the combined intent in Equation (4.5) appears:

r3← C3r2+(1− C3)r3 (4.6)

This equivalence implies that daxpby implements precisely the behaviour required
by the source-level loop and call to daxpy on the LHS of Listing 4.1. A maintainer
working on porting the code could identify this, and legally replace the loop and
daxpy call with a single call to daxpby . The code on the RHS of Listing 4.1 highlights
the result of doing so. By applying this one transformation, 4 lines of code have been
removed, one fewer loop is executed, and it is likely that daxpby is more performant
than daxpy .

4.2.3 Procedure

The description above implies the presence of an expert maintainer who is able to
correctly identify the preserved behaviour, and apply the resulting change to the code.
This is, unfortunately, a time-consuming procedure: NWChem contains in excess of
4.8M lines of Fortran.2 While many of these lines have been generated automatically
(for example, producing derivatives of energy functionals), this is largely a one-off

2Measured using cloc [129] at revision a74cd6faad1ce1778207250bc9b789a93b6451fc.
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process, and generated code is checked into and maintained as part of the source tree.
Opportunities for automatically improving the code are therefore likely to be fruitful
given the underlying repetition from this code-generation process.

This chapter, therefore, presents a semi-automatic scheme to identify similar op-
portunities in application code. Doing so entails two distinct phases:

Match and Replace: If a source-level description of both daxpy and daxpby is
available, the original call is inlined directly. In Listing 4.1, the resulting code
after inlining is summarised in the bottom-center box.3 Then, the inlined code
can be matched against the source-level description of daxpby from MKL. This
is achieved using an existing, graph-based constraint solver [12], which applies
a series of normalising compiler passes (such as loop fusion, which applied in
this example), then detects compatible regions of code, and suggests potential
refactorings to the developer.

Synthesis: In practice, it cannot be guaranteed that there is a suitable source level
description for every library function called by an application. This may be due
to the library provider not releasing an appropriate description, it no longer
being available, or simply being poorly documented. It may also be defined in
a manner suitable for human consumption, but not compiler automation. It is
certainly the case that there is not agreement among all library developers about
a universal language to describe the semantics of their libraries.

If the source code of the two libraries is in fact unavailable, program synthesis
is used to generate programs corresponding to both (for example, daxpy and
daxpby in the example in Listing 4.1) Then, the inlining and pattern matching
procedure is performed as described above. By using synthesis in this way, the
two halves of the problem (searching for replacements, and dealing with opaque
libraries) can be decoupled and approached separately.

Thus, the developer is able to port their code to a new, extended library without
having to identify the opportunity manually (they need only agree to the suggested
replacement). For the code in Listing 4.1, for example, it results in a 20% local perfor-
mance improvement on an Intel Xeon E5-2620.4 If the code is to be ported again or an
improved library is released, then the procedure can be repeated, avoiding legacy API
tie-in. At the heart of the approach is the use of program synthesis and graph based
generalised constraint matching.

3Calls to other functions (e.g. dcopy) will also be inlined, but are not shown in the figure for clarity.
4Measured by extracting the example code as a microbenchmark, and quoted for the sake of the

example. More rigorous, full-application performance data is given in full in Section 4.6.
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4.3 Type Annotation Language

To be able to synthesise implementations of library functions given only their interface,
a definition of what a function’s interface actually is is required. One possible such
definition is to use only the function’s type signature; knowing the type signature of a
function allows correctly-typed input-output examples to be collected with respect to
a particular calling convention.

However, a type signature alone is not an adequate specification for synthesis; the
space of programs with any given signature is infinite. In some synthesis applications,
the function oracle is able to provide partial information in a feedback loop (e.g.
providing minimal, informative counterexamples to a proposed solution [50, 118]).
The oracles provided by library functions cannot do so in general, and can provide
only correctness checks for a proposed solution.

Fortunately, the type signature is not the only component to a library function’s
interface. Users of a library are aware of many properties of each interface that cannot
be expressed in the type system (for example, the pointer int *xs points to exactly
int N valid allocated elements), but are required to make correct use of the function.

Special-casing individual such sources of information in the synthesiser is not
scalable. Ideally, they would be encoded more formally alongside the type signature
in a well-defined common format to allow automated tools (such as a synthesiser) to
make use of them.

To that end, this section introduces a minimal, flexible annotation DSL for type
signatures. Additionally, semantics for a logical query language over this DSL are
given, and examples of their application to synthesis are shown. By doing so, synthesis
targeting functions with type signatures and additional associated information can be
reduced to a better-defined, type-directed approach.

4.3.1 Context

For maximum interoperability, the calling convention used by targeted library func-
tions is the ubiquitous C foreign function interface (FFI). This means that the starting
context for the type annotation DSL is a simplified subset of the C type system. From
a set of concrete base types, ( int , float , etc.), pointers ( int* ) and aggregates
( struct{int x; int y;} can additionally be constructed and passed as function
arguments.

Using this subset of C types, function signatures can be written interchangeably
(depending on the context) as Tr (T0 p0, ..., Tn pn) or (?0 : �0 , . . . , ?= : �=) → �A .
Each parameter in the signature is assigned a unique identifier (as would be the case
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1 void (int n,

2 float a, float *x,

3 float b, float *y);

B8I4 ⊆ %×%

B8I4 , {(x,n), (y,n)}

>DC?DC ⊆ %

>DC?DC , {y}

Figure 4.1: The C function signature for the extended BLAS function daxpby , and the
property relations that hold for it.

for a function signature in real code).

4.3.2 Property Relations

To extend C type signatures with additional properties, a system of free-form untyped
relations is defined as follows. Let 5 be a functionwith type signature) , (�0 , . . . ,�=)→
�A , taking parameters (?0 : �0 , . . . , ?= : �=). Then, define:

% , {?0 , . . . , ?=}

� , set of all C types

( , set of all C string literals

# , set of all C numeric literals

* , %∪· �∪· (∪· #

Then, 5 can be equipped with a set of relations ' 5 in addition to its type signature,
such that ' 5 expresses the “additional” information known about the interface of 5 .
Each relation A8 ∈ ' 5 satisfies A8 ⊆ * : for some : > 0. Additionally, a naming function
� is defined such that �(A8) is a unique identifier for each A8 .

Less formally, named relations contain untyped sets of “atoms”, where those atoms
can be function parameters, literal values or C types (i.e. they are ∈*). The particular
semantics of each relation are in a sense extrinsic; the construction of each entry has no
meaning in itself, but properties of the signature may be interpreted by other systems
by inspection of the relations.

This specification is intentionally simple; it is the smallest definition that allows for
sufficiently useful properties to be encoded, while maintaining a close relationship to
the function’s type signature. Indeed, the existing signature syntax is kept for famil-
iarity only, as type annotations could be made homogeneously in the same relational
environment.5

5i.e. CH?4 ⊆ %×� , {(?0 ,�0), . . . }
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D ∈ ' Γ ∼ {(E, D)}
(bind)

Γ[E ↦→ D] ` '(E)
D ∈ ' (lit)
Γ ` '(D)

Γ ` '(G) Γ′ ` )(H) Γ ∼ Γ′
(conj)

Γ∪Γ′ ` '(G)∧)(H)

D ∉ ' (neg1)
Γ ` ¬'(D)

Γ ` ¬'(D)
(neg2)

Γ[E ↦→ D] ` ¬'(E)

¬∃D . Γ ` '(D))
(neg3)

Γ ` ¬'(_)

% is a base relation %(G) holds
(base)

Γ ` %(G)

Figure 4.2: Unification rules for the property query language defined in this section.
All relations are shown as unary relations for clarity; the same inference rules can be
trivially lifted to any arity. Metavariables D, E are implicitly restricted to be ∈ * and
∈ + respectively.

Returning to the application code given in Listing 4.1 at the beginning of this
chapter, an example of how properties of the function daxpby can be encoded in
this system is given in Figure 4.1. Two properties are defined for the function (B8I4
and >DC?DC; the synthesis interpretation of these is given in Section 4.4), ranging over
parameter names in particular.

4.3.3 Queries

As discussed above, the semantics of each relation are defined extrinsically by other
systems applying meaning to them through interpretation. The primary mechanism
through which this can be achieved is a query language, in the spirit of a simple logic
programming language. By constructing queries in this language, the structure of the
relations associated with a function can be deconstructed and inspected.

The semantics of this query language are defined simply, in terms of unifica-
tion rules over first-order terms from the annotation language. A query & is written
'(G0 , G1 , . . . ), and can be understood informally to mean “does the relation ' contain
the entry (G0 , G1 , . . . )?”. To allow for unification, queries can range over the set:

*+ , * ∪· + (4.7)

for some set + of variable identifiers not already in * . That is, queries can bind

identifiers ∈ + to the concrete elements contained in the relation.

To define the semantics of this query language, a definition for unification is re-
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quired. A unification context Γ is a set of ordered pairs:

Γ ⊆ (+ ×*) (4.8)

A context represents a mapping from symbolic identifiers to concrete elements of
* . Two operations on contexts are defined: extension and compatibility checking.
Extending a context is defined only when name clashes do not occur:

Γ[G ↦→ E] , Γ∪(G, E) iff (G, E) ∉ Γ (4.9)

Then, define two contexts Γ,Γ′ to be compatible (written as ∼) when:

Γ ∼ Γ′ , ∀(E, D) ∈ Γ . (E, D′) ∈ Γ′ =⇒ D = D′ (4.10)

That is, when two contexts bind the same symbolic identifier, they must bind it to the
same concrete element in* . Identifiers they do not share are irrelevant.

Given these definitions, checking a query can be defined inductively. Write:

Γ ` '(G0 , . . . , G=) (4.11)

for the judgement “The relation ' holds for G0 , . . . in context Γ”. For a query to succeed,
there must exist a context Γ that satisfies the judgement. Figure 4.2 shows inductive
rules defining when this holds; an algorithm to construct Γ follows naturally from
these rules.

In Figure 4.2, “base relations” are interpreted outwith the context of the annotated
property relations. For example, the relation 8B-?>8=C4A()) holdswhenever the param-
eter type ) is a pointer type (rather than a scalar). The definitions for these relations
are intuitive and can be inferred from the relation name when they appear.

Interpreting the query unification rules can be best understood with a worked ex-
ample. In Figure 4.3, a type signature is shown alongwith a set of property annotations
that apply to it. Then, a query used by Annote during synthesis is given, along with
a derivation for a valid unification from that query.

4.3.4 Summary

This section has demonstrated a DSL for annotating function type signatures with ar-
bitrary properties, and an efficient, robust unification-based query algorithm for these
properties. While used in the remainder of this chapter to drive program synthesis, the
annotation and query DSL could be applied to more general static analysis methods
in future work. For example, static analyses attempting to prove general properties of
code could be effectively directed by property annotations and queries where infer-
ence is intractable. Existing techniques using interface definition languages could be
adapted to the general annotation framework in this chapter.
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1 void f(int n, int *x, int *y, int *z)

(a) Type signature of a function compatible with Annote.

B8I4 ⊆ %×%

B8I4 , {(x,n), (y,m)}

>DC?DC ⊆ %

>DC?DC , {y}

(b) Property annotations for the above type sig-
nature, showing which parameters represent
pointer size bounds, and which represent out-
puts from the function.

¬B8I4(�,_) ∧

CH?4(�,)) ∧

8B-?>8=C4A())

(c) An example of a valid query for the above
type signature, as used byAnnote during syn-
thesis.

¬∃D . B8I4(z, D)
∅[� ↦→ z] ` ¬B8I4(�,_)

z has type int∗
∅[� ↦→ z,) ↦→ int∗] ` CH?4(�,))

int∗ is a pointer type
∅[) ↦→ int∗] ` 8B-?>8=C4A())

Γ , ∅[� ↦→ z,) ↦→ int∗] ` ¬B8I4(�,_)∧ CH?4(�,))∧ 8B-?>8=C4A())
(d) Abbreviated proof tree showing a valid unification for the query, property set and type
signature shown above, with compatibility (∼) checks omitted for brevity.

Figure 4.3: Worked example of query unification being applied to a concrete type
signature and set of properties. Annote uses a query similar to the one shown above
during synthesis.

4.4 Synthesis

Annote uses the signature annotation and queryDSL described previously to drive the
heuristic selectionofprogramsketches in its synthesisprocess. This sectiondescribes in
detail the synthesis algorithms used by Annote to elaborate a correctness specification
(i.e. IO examples and type annotations) into a program sketch, and finally into a correct
solution.

4.4.1 Overview

To synthesise programs, Annote follows a two-phase, sketch-based methodology.
Starting with a specification (type signature, property annotations and an oracle from
which input-output examples can be generated), it generates many input-output pairs
by calling the oracle repeatedly with different, random input data. These pairs specify
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correctness for possible solutions as observational equivalence (if a solution matches
the oracle on every observed example, it is judged to be correct).

Next, a set of heuristic rules arematched against the annotated properties. Success-
fully matched rules yield an instantiated program fragment; the set of all fragments
matched forms the starting point from which program sketches are constructed. Enu-
merating possible compositions of the available program fragments gives a set of
sketches, each of which potentially represents the structure of a correct synthesis so-
lution.

For each sketch, candidate programs are searched for by enumerating possible
instruction values at each hole in the sketch (using the abstractions described in Sec-
tion 3.6.1 to safely instantiate holes in the possible absence of type information). Each
candidate program is tested using the same set of input-output pairs as the reference
function; if all examples match, then the candidate is observationally equivalent and
can therefore be returned as a correct solution.

The remainder of this section describes each of the components of this synthesis
workflow in detail.

4.4.2 Sketching Control Flow

The program sketches used by Annote to direct its search for candidate solutions
are implemented in terms of the fragment language and semantics first defined in
Section 3.5. In particular, fragment templates are combined with the query language
defined in Section 4.3.3 such that the bound variables from successfully unified queries
can be used to instantiate fragments from templates. Enumerating possible composi-
tions of these fragments produces a set of sketches.

This section gives details of the template instantiation extension to the property
query DSL described previously, as well as the algorithm to produce composed pro-
gram sketches. Additionally, it provides full listings of the fragment classes, annota-
tions and heuristic rules used to drive this portion of the synthesiser.

4.4.2.1 Fragment Instantiation

Section 4.3.3 specified a query DSL for property relations attached to a type signature.
When a query is successfully matched against a set of relations, the unification algo-
rithm produces a set of bound identifiers. Annote implements a set of heuristic rules,
each of which has the general form:

&(@0 , . . . , @=) =⇒ �( 50 , . . . , 5<) (4.12)
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Algorithm 1 Generating fragments
1: function GenerateFragments(?A>?B, AD;4B)
2: 5 A06B← ∅
3: for each AD;4 in AD;4B do
4: <0C2ℎ4B←Match(AD;4.@D4AH, ?A>?B)
5: for each <0C2ℎ in <0C2ℎ4B do
6: 5 ← AD;4.C4<?;0C4 instantiated with <0C2ℎ
7: 5 A06B← 5 A06B ∪ 5

8: end for

9: end for

10: return 5 A06B

11: end function

12:

13: function Match(@D4AH, ?A>?B)
14: return set of all valid unifications of @D4AH against ?A>?B
15: end function

where & is any query in the DSL from Section 4.3.3, � is a fragment template class as
defined in Section 3.5, and each @8 , 58 are query identifiers such that:

{ 50 , . . . , 5<} ⊆ {@0 , . . . , @=} (4.13)

The query &, when matched successfully, binds values to each @8 . The fragment
produced by instantiating the templatewith the corresponding values bound to each 58
is added to the active set of fragments for the current synthesis problem. Algorithm 1
details the fragment instantiation and collection algorithm in full.

By way of example, consider an example rule used by Annote:

B8I4(-,#) ∧ B8I4(.,#) ∧

CH?4(-,)) ∧ CH?4(.,() ∧ CH?4(#,int)

8B-?>8=C4A()) ∧ 8B-?>8=C4A(()

=⇒ zip_loop(#,),-,(,.)

(4.14)

The intent of this rule is to instantiate a “zip” loop to iterate jointly over twopointers,
each of which has the same statically-known size # . Each parameter for the zip_loop
fragment class is bound by the variables in the query.

4.4.2.2 Annotations

Annote uses 5 property annotations to describe function interface properties, each of
which could be readily derived from library documentation for the relevant functions.
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The semantics of each of these is given below, along with a brief explanation of why
these are interface properties (rather than internal implementation details):

size(xs, n): the parameter xs points to valid, allocated memory with at least n
elements; loading a value frommemory anywhere in the valid region ismemory-
safe. If a caller passes a region of memory to a function that is not consistent
with this annotation, the internal implementation will almost certainly attempt
to access invalid memory.

output(x): the pointer x is an output parameter for the function. This can be com-
municated to a certain extent by the C type system’s const keyword, but this is
weakly enforced; calling codemust still be awarewhen allocatedmemory should
be writable when calling a function with output parameters.

enum(x, c0, ..., cN): the parameter xmust take one of the distinct constant values
c0. . .cN. Again, weak enforcement and communication of this property exists in
the C type system, but the calling code

pack(xs, c): each logical entry in the array pointed to by xs contains c physical
elements. Similarly to size, this ensures that all memory accesses made by the
called function are valid.

indices(xs): elements of xs in memory are logically array indices. This annotation
is the least common, and is the only one not directly linked to a safety property of
the called function. However, it was used only to synthesise one function class
( spmv ), and remained readily available in documentation for these functions.

All of these annotations are communicated explicitly in written form by the user
documentation of each library, because of their relationship to safety and correctness
assertions made by the called function. As a result, annotating the individual function
signatureswith the appropriate propertieswas not an onerous task and did not require
specific knowledge of their implementation details.

4.4.2.3 Fragments

Using the sketch language semantics given in Section 3.5, Annote defines a basis set
of fragment templates implementing common control-flow idioms. The semantics
and structure of these templates was derived in large part from the idiom definitions
developed by Ginsbach et al. [112], along with basic conditional control flow not
relevant to their detection of idioms. A full listing of the template structures used, and
the parameters they accept to instantiate a concrete fragment are listed in Table 4.1.
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Table 4.1: Listing of fragment templates that can potentially be instantiated by Annote
to populate the set of fragments used in sketches. In this table, the semantics of the
templates are described informally as if they were C-like code. Their semantics are
defined in practice by the implementation of the 2><?8;4 operation for each template
(Section 3.5).

Template Parameters Description

loop # : value A loop structure similar to a C for-loop up to a
fixed upper bound (where that bound is either
an integral constant or a function parameter).

regular_loop # : value
) : type
- : param

Similarly to loop, a for-loop to a fixed upper
bound, butwith the intent of looping specifically
over (and acting on) an array - containing data
of type ).

zip_loop # : value
) : type
- : param
( : type
. : param

Analogous to regular_loop, but specialised for
the case where multiple arrays have identical
size # . Shown here in the binary case, but is
implemented by Annote for any number of ar-
rays.

if_else - Unparameterised conditional statement; the
condition and both arms of the statement are
filled by the synthesis process.

switch - : param
�0 : int
�1 : int
. . .

Switch statement parameterised on a set of con-
stant values (i.e. - is checked against each �8 in
turn). Implemented by Annote for any number
of constant values.

index ) : type
- : param

Use a synthesised value from the current scope
to explicitly index into the array -.

output ) : type
- : param

Write a synthesised value of type ) to - or any
pointer obtained by indexing into it.
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¬B8I4(_, #) ∧ CH?4(#,int)

=⇒ loop(#)

1
B8I4(-,#) ∧ CH?4(#,int) ∧

CH?4(-,)) ∧ 8B-?>8=C4A())

=⇒ regular_loop(#,),-)

2

B8I4(-,#) ∧ CH?4(#,int) ∧

CH?4(-,)) ∧ 8B-?>8=C4A()) ∧

B8I4(.,#) ∧

CH?4(.,() ∧ 8B-?>8=C4A(()

=⇒ zip_loop(#,),-,(,.)

3

=⇒ if_else()
4

4=D<(-,�0 , . . . , �=) ∧

CH?4(-,int) ∧ CH?4(�0 ,int) ∧

. . . ∧ CH?4(�= ,int)

=⇒ switch(-,�0 , . . . , �=)

5

¬B8I4(-,_) ∧

CH?4(-,)) ∧ 8B-?>8=C4A())

=⇒ index(-)

6

>DC?DC(-) ∧

CH?4(-,)) ∧ 8B-?>8=C4A())

=⇒ output(-)

7

?02:(�,_) ∧ CH?4(�,int)

=⇒ loop(�)

8

8=3824B(-) ∧

CH?4(-,)) ∧ 8B-?>8=C4A()) ∧

CH?4(.,() ∧ 8B-?>8=C4A(()

=⇒ index(.)

9

?02:(_, -) ∧ CH?4(-,)) ∧

8B-?>8=C4A())

=⇒ index(-)

10

Figure 4.4: Full listing of the query rules used by Annote to instantiate fragments from
function interface properties.

The set of fragment templates used is not deliberately specialised or biased towards a
particular function or library; they are designed to reflect common code structures as
a human developer might have written, and to be intuitively inferred based on property
annotations.

4.4.2.4 Rules

The full set of rules used by Annote to instantiate fragments from its set of templates is
given in Figure 4.4. These rules were developed in parallel with the sets of annotations
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Algorithm 2 Combining fragments
1: function CombineFragments( 5 A06B,<0G�4?Cℎ)
2: ?B← ∅
3: for 5 in 5 A06<4=CB do

4: ?B← ?B ∪ CombinePartial( 5 , 5 A06B,<0G�4?Cℎ)
5: end for

6: return ?B

7: end function

8:

9: function CombinePartial(?0AC80;, 5 A06B, 34?Cℎ)
10: ?← {?0AC80;}
11: if 34?Cℎ > 0 then

12: for 5 A06 in 5 A06<4=CB do

13: =4F← ?0AC80; ◦ 5 A06
14: ?← ? ∪ CombinePartial(=4F, 5 A06B, 34?Cℎ−1)
15: end for

16: end if

17: return ?

18: end function

and fragments it uses (Section 4.4.2.2 and table 4.1 respectively), based on “common-
sense” interpretations of property annotations. For example, if documentation states
that a pointer should point to at least = elements, and that it is also an output parameter,
it is likely the case that each pointed-to element might be written to (combining rules
2 and 7 from Figure 4.4). This interpretation relies on the assumption common to
this entire section: that the underlying code for a library functionwas originallywritten
intuitively. That is, the code is not deliberately obfuscated or implemented to behave
pathologically with respect to observational equivalence or synthesis techniques. It is
easy to construct functions that are intractable to synthesise, but these functions do
not frequently line up with useful application code written in practice.

4.4.2.5 Composition

After matching the rules in Figure 4.4, Annote has a set of individual fragments likely
to appear in successfully synthesised solutions. Its next step is to produce compositions
of these fragments corresponding to sketches of whole-program structure.

To do this, it uses a simple enumerative algorithm to produce all possible unique
compositions of fragments up to a specified upper size bound; this algorithm is given
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Algorithm 3 Dataflow generation
1: function FillDataflow(2 5 6, =)
2: CA44← dominance tree of 2 5 6
3: ?ℎ8B← ∅
4: for each 1;>2: in inorder(CA44) do
5: if 1;>2: has > 1 predecessors then
6: ?ℎ8B← ?ℎ8B ∪ { new untyped ) node in 1;>2: }
7: end if

8: for each ℎ>;4 in 1;>2: do
9: ;8E4← live SSA values at ℎ>;4
10: sort ;8E4 by proximity heuristic
11: fill ℎ>;4 by sampling geometrically from ;8E4

12: end for

13: end for

14: for each ) in ?ℎ8B do
15: ;8E4← live SSA values at block with )

16: choose incoming values to ) from ;8E4

17: end for

18: end function

in Algorithm 2. While the number of generated sketches grows exponentially with
the number of fragments available, the number of rules matched for any individual
signature is small for every function in the evaluation dataset. Intuitively, it is unlikely
that a function expresses every possible control-flow idiom available at the same time;
instead it is likely to express a small subset.

4.4.3 Generating Dataflow

Given a sketch composed from several fragments (i.e. a partial program containing
holes, as defined in Section 3.6.1), the final step in Annote’s synthesis process is to add
data-flow instructions to the sketch, producing a candidate program.

Reifying a sketch with holes to an executable candidate program can be done
using a generic algorithm that requires no specific knowledge of the fragments that
make up the sketch. The algorithm (shown in Algorithm 3) walks the dominance tree
of the sketch in-order, filling holes in the structure with stochastically sampled values.
Additionally, because the sketch is in SSA form, ) nodes are inserted to handle looping
or divergent control correctly.

At each node in the dominance tree, a set of “live” instructions is computed. The
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instructions in this set come from fragment definitions (for example, values loaded
from memory in a loop iteration), as well as intermediate holes previously in the
program. When a basic block in the sketch is traversed, the set of live values at each
hole is sorted by a proximity heuristic: roughly, instructions are more likely to operate
on more recently defined values than they are on “older” ones.

Holes are filled by sampling from a set of “recipes” that combine multiple instruc-
tions to produce a value. For example, if two values are both integers, then a valid
way to combine them is to create an add i32 instruction. Arguments are sampled
from the sorted list of live values available at the current hole (weighting more recent
values more highly), then a way of combining them is sampled from the set of valid
combinations for those arguments. Validity is determined by a predicate for each
recipe.

Available operations include integer and floating point arithmetic, calls to intrin-
sic mathematical functions, and a small number of other simple primitives such as
conditional selects. Searching for a correct candidate program amounts to iteratively
performing this instruction generation algorithm on each possible control flow struc-
ture, testing each resulting program for behavioural equivalence until a solution is
found.

4.4.4 Verification

The final step taken by Annote is to test the reified solution program with a large
number of input-output examples to determine whether or not it is correct. Because
the synthesis problem posed in this chapter deals with “black-box” oracles, no ground

truth specification is available for each synthesis problem. That is, given a candidate
solution, there is no way to formally determine whether or not it is correct with respect
to the library function in question.

The only available test for correctness in this context is observational equivalence: if a
candidate exhibits identical behaviour to the oracle across a set of representative input
examples, then they are observationally equivalent. Candidates reported as correct
syntheses in this chapter are those that are observationally equivalent to the relevant
reference function.

As the library functions targeted for synthesis by Annote act over a domain of
floating-point numbers, the precise definition of “identical” behaviour is relaxed to
accommodate cases where IEEE floating-point arithmetic diverges from ideal real-
number semantics. For example, in floating point arithmetic, multiplication is not
associative; it does not hold that 0 ∗ (1 ∗ 2) = (0 ∗1) ∗ 2 in general. The order of operations
chosen by a particular oracle is unlikely to be significant, and so it is useful to allow
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synthesised solutions to potentially select reordered expressions while preserving the
underlying real-number calculation.

To achieve this, approximate floating point equality is used: if two numbers are
separated by atmost 10ULP or an absolute value of 0.00001, they are judged to be equal
for the purposes of observational equivalence. No cases where this approximation
permitted a fundamentally incorrect program to be judged correct were identified.
These bounds can be configured depending on the demands of a particular scenario.

This test is unsound by definition, unfortunately; there is no way to establish
formally that a candidate programwill behave correctly on every possible input, as the
number of possible input examples is intractably large. However, this unsoundness is
common in property-based software testing and program synthesis, and is normally
accepted to be an acceptable definition when stronger guarantees are not available
[130]. Additionally, in the context of this chapter, the targeted oracles are performance-
sensitive library functions originally written by a human developer. Such functions
are unlikely to exhibit different behaviour on a sparse subset of their input domain,
increasing the likelihood that observational equivalenceona large set of input examples
is good evidence that a solution is in fact correct.

If the original source code for the targeted library functions was in fact available,
then more sophisticated techniques to determine correctness can be deployed. For
example, in Chapter 7, symbolic model checking with KLEE [131, 132] is deployed to
verify solutions.

4.4.5 Summary

This section has presented the core synthesis algorithms used by Annote to learn pro-
grams that are observationally equivalent to library functions. By matching heuristic
rules against simple-to-provide property annotations on a function’s type signature, a
set of program fragments is identified and composed into potential sketches. Then,
values are sampled stochastically to fill the holes in generated sketches. This produces
a reified program that can be executed and tested for observational equivalence against
the library function oracle.

4.5 Experimental Setup

The evaluation of Annote in this chapter can be split into two distinct questions.

• Can program synthesis (i.e. Annote, as implemented in this chapter) make use
of type signature annotations to discover programs behaviourally equivalent to
real-world library functions?
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Name Kernels Acceleration LoC

NWChem Dense BLAS 1.2M
Abinit Dense BLAS,CUDA 900k
Pathsample Sparse Handcoded SpMV 40k
Darknet Neural Network CUDA 27k
Parboil Linear Algebra Handcoded MxM 187

Table 4.2: Application source code used for evaluation.

Library Platform Kernels

Intel MKL Intel CPU Dense Linear Algebra
cuBLAS Nvidia GPU Linear Algebra
cuDNN Nvidia GPU Neural Networks
cuSparse Nvidia GPU Sparse Linear Algebra
CLBlast OpenCL Devices Dense Linear Algebra

Table 4.3: Optimised libraries selected for evaluation.

• Given such correctly synthesised implementations, can they be generalised to
CAnDL constraint descriptions [12] and used to suggest valid refactorings that
improve application performance?

In this section, a detailed methodology to answer these questions is presented.
First, a collection of well-known libraries containing optimised versions of common
computational bottlenecks is identified. The function signatures in these libraries
are then annotated with the relevant interface properties listed in Section 4.4.2.2, and
synthesis is attempted using Annote.

Then, a corresponding group of widely-used, performance-sensitive applications
(that are likely to be able to make use of platform-specific optimised library routines)
is identified. For functions that could be successfully synthesised by Annote, CAnDL
constraints are generated following the method described in Section 3.36. Each appli-
cation’s source code is then searched for matches of these constraints.

Finally, where successful constraint matches are found, the corresponding code
refactoring is applied to the application (i.e. replacing original application code with
calls to optimised library routines). The performance of each application on repre-
sentative whole-program workloads, before and after applying these refactorings is
measured and reported.

6Developed by Philip Ginsbach, a co-author of Collie et al. [2]
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Figure 4.5: An extract from the documentation of Nvidia’s cuBLAS library, which
provides optimised GPU implementations of linear algebra routines. This extract
demonstrates (at least anecdotally), that documentation often provides the type of
information used to annotate type signatures with properties of their interface.

4.5.1 Libraries

The libraries selected for evaluation are summarised in Table 4.3. They fall broadly
into two categories: those that are optimised for a particular CPU architecture (Intel
MKL) to achieve performance, and those that use the GPU (CUDA libraries, CLBlast).
Each library targets a slightly different specific problem domain, but there are several
common functions that are implemented in multiple libraries (for example, matrix-
vector multiplication is a linear algebra operation contained in the BLAS standard, but
it is also a fundamental building block of neural network architectures).

To prepare the libraries for synthesis, the subset of their functions compatible with
Annote’s interface (see Section 4.3) was identified. Informally, restricting the functions
in this way selects for those most likely to present performance bottlenecks; features
such as pointers to pointers are more likely to appear in setup functions or in stateful
contexts such as memory allocation. Such cases are beyond the scope of this chapter.

For each function in the compatible subset, the corresponding library documenta-
tion was examined to identify which property annotations applied to it. For example,
an excerpt from the Nvidia documentation for the function cublas_daxpy is shown
in Figure 4.5. From this documentation, the relations B8I4(x,n) and >DC?DC(x) can
be easily inferred; the property annotations used by Annote simply codify existing
knowledge required of a human user of the library. Finally, a shared library loadable
by Annote was compiled, re-exporting the relevant functions from each library.

4.5.2 Applications

To evaluate the potential for real-worldperformance improvements bymigrating appli-
cations to new, optimised libraries, 5 representative example applicationswere selected
(these are listed in Table 4.2). Each application could potentially make use of a differ-
ent subset of the available libraries (e.g. some use sparse methods extensively, while
others are bottlenecked on specific dense routines). Additionally, the applications vary
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in their existing use of acceleration methods: some are already locked in to a particular
library (e.g. standard BLAS or CUDA), while others contain hand-coded library rou-
tines in their source. This variation serves to demonstrate the flexibility of the unified,
inlining-based approach to migration.

Three of the selected applications (NWChem, Abinit, and Pathsample) are scientific
simulation applications fromdifferent problemdomains (molecular dynamics, density
functional theory, and discrete path sampling respectively). Each of these represents
a large code base, widely used by active research groups; NWChem contains in excess
of 1M lines of code, and Abinit alone has been cited more than 6,000 times since 2002.

The scientific applications selectedhavedifferent existing strategies for acceleration:
Abinit must be linked to a BLAS implementation installed somewhere on the target
system, while NWChem bundles an internal linear algebra library and Pathsample im-
plements a small set of required operations by hand (including some sparse methods).
Each application is distributed with several example workloads; two of these standard
datasets per application (corresponding to different chemical scenarios, and exercising
different sections of their code) were used to evaluate performance.

As well as scientific applications, machine learning and neural network workloads
are a significant consumer of acceleration libraries. To represent this domain, the
Darknet [123] framework was selected. Darknet is a widely used, open-source deep
learning framework that can be used to instantiate implementations of different neural
architectures (for example, it has been used recently to implement a number of highly
cited, state-of-the-art computer models [133, 134, 135]). It offers two distinct imple-
mentations of its underlying neural network primitives, for the CPU and GPU (written
in hand-optimised C and CUDA, respectively). To evaluate performance, Darknet im-
plementations of three well known models for the ImageNet classification task were
selected. These models exercise the underlying primitives in different ways, exhibiting
different performance characteristics as a result.

Finally, to quantify the best possible performance achievable using the proposed
library substitution approach, the matrix-multiplication benchmark (SGEMM) from
Parboil was selected [136]. Because this benchmark contains a single linear algebra
routine, and performs no additional work, it represents the limit of potential perfor-
mance improvements. That is, Amdahl’s law states that as the proportion of work
? performed in the accelerated component approaches 1, the total speedup (C>C0; ap-
proaches B, the component speedup:

(C>C0; =
1

(1− ?)+ ?

B

(4.15)
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4.5.3 Platform

The primary target platform for the experiments in this section was a dedicated,
single-tenant server with a 24-core Intel Xeon E5-2620 processor, 16GB of RAM and an
Nvidia Tesla K20 GPU. Applicationswere compiled at -O3 using a source build of GCC
9.1.7 Intel MKL version 2019.1.144 and version 8.0 of the CUDA libraries were used.
To evaluate the performance impact of porting applications to a different platform, a
secondary serverwith a 12-coreAMDA10-7859kCPU and an integratedAMDRadeon
R7 iGPU was used. For brevity, these machines are referred to as the Intel and AMD
platforms, respectively.

4.5.4 Benchmarking Methodology

Each application was run on each available dataset in its “out of the box” configuration
on the Intel platform to provide a performance baseline. This configuration represents
the default performance achievable by each application without dedicated work to
optimise the workload.

For Pathsample the baseline code is sequential, handwritten Fortranwith no library
calls. This is also the case for NWChem, which contains sequential implementations
for a subset of the BLAS standard. For Abinit, the baseline configuration links to
standard BLAS libraries installed on the host system. Darknet offers a sequential C
implementation as well as a CUDAGPU one; the C versionwas selected as the baseline
as the GPU version requires specific configuration.

The performance of each application was then measured after implementing the
suggested code replacements for a single library at a time, on the Intel platform. In
each case, this entailed using either Intel MKL 8.0 or a subset of the collected CUDA
libraries.

Additionally, as Darknet offers a hand-optimised CPU OpenMP runtime, the rela-
tive performance impact of migrating its sequential C implementation to the GPUwas
evaluated using the CLBlast library.

4.6 Results

The results in this section are structured as follows. First, the overall performance
improvements achievable through library migration are summarised across the ap-
plications and libraries selected for evaluation. Next, the number of library calls and
candidatematches for APImigration is shown, demonstrating the effectiveness of both
Annote’s synthesis methods. This is followed by an evaluation of the execution time

7The most recent version available at the time this work was orginally carried out.



4.6. Results 77

Figure 4.6: Performance achievable by adopting code replacements suggested by our
tools, for both Intel MKL and Nvidia CUDA libraries across the set of benchmarks
listed.

needed to synthesise equivalent programs for each library. Finally, the accuracy of the
genetic graph matching algorithm is evaluated, and a discussion of the potential for
unsound behaviour to arise when using these tools is presented.

4.6.1 Overall Results

A summary of the performance difference for each application’s workloads on the Intel
platform is shown in Figure 4.6. On scientific applications, the best implementation for
each one achieved speedups of between 1.2 and 2.7× (note that this is the end-to-end
performance of each application, rather than just isolated kernels). In Pathsample, the
NGT workload spends less time in sparse matrix operations than the PFold workload;
Amdahl’s law means that inevitably PFold will benefit more from acceleration. MKL
outperforms the Nvidia libraries by a small margin in both cases. This is due to the
overhead of setting up the CPU-GPU interface, and transferring kernels across the
shared bus. Memory tagging and a copy-on-write page caching scheme has been
used in similar work to reduce this overhead [23]. Even if only Nvidia libraries were
available, no slowdown was observed.

NWChem exhibits similar characteristics, with MKL significantly outperforming
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Figure 4.7: Performance results for neural network inference on an AMD device with
no CUDA support.

the Nvidia libraries. Modest speedups are available for both configurations with an
end-to-end speedup of 1.2× available. This is due to the increased heterogeneity in
NWChem’s workloads; far less of its computational time is spent in readily accelerable
routines.

Abinit’s behaviour differs; the Nvidia libraries outperformMKL, giving 1.2 to 1.9×
speedup. This is due to the use of far larger homogeneous problem sizes, where
the benefits of acceleration outweigh GPU communication overhead. Both MKL and
CUDA are able to provide speedups on these workloads.

More significant improvements can be observed for the neural network workloads,
as the amount of time spent in accelerator code sections increases further relative to
the scientific applications. Improvements range from 5.5× for the smaller DenseNet-
201 to 11× for the largest network, VGG-16. Like Pathsample and NWChem, all the
networks achieve the greatest performance with MKL, though Nvidia libraries still
give improvements (3.2× to 7.7×).

Finally, the Parboil SGEMM benchmark clearly illustrates the impact of Amdahl’s
law on this type of coarse-grained optimisation strategy. Here, there is just one kernel
that can be readily accelerated; by doing so, speedups of 15× to 19× can be achieved.
This represents, roughly, the best case performance improvement achievable with this
kind of optimisation.

4.6.2 Porting to New Hardware

Within Darknet, the use of optimised GPU libraries is built into the code; CUDA and
CPU implementations are mixed together using preprocessor directives and the build
system. As CUDA is not available on AMD GPU platforms, porting Darknet to such a
platform means targeting OpenCL based libraries such as CLBlast [137].

Using a similar methodology as for the Intel platform, the performance of the “out-
of-the-box”, CPU implementation of Darknet was compared against a hand-optimised
parallel OpenMP version [138], and a version targeting CLBlast using suggested code
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Table 4.4: Summary of locations in application code where matches of synthesised
library functions could be identified. The left-hand side of the table gives the true

positive number of locations as identified by manual examination of the code. Values
reported are split by whether they corresponded to handwritten application code (C)
or inlined library function calls (L). The right-hand side gives the number of these
locations successfully matched by four different versions of the discovery algorithm:
1 no generalisation, 2 generalisation, 3 generalisation with nested loop corrections,
and 4 false positive testing. See Section 4.6.5 for details.

Abinit Pathsample NWChem Darknet Parboil Total

Discovered

1 2 3 4

spmv
C 2 2 4

0 0 4 4
L 0

gemm
C 1 2 1 1 5

0 1 186 186
L 180 1 181

gemv
C 1 2 1 4

0 0 51 51
L 47 47

ger
C 3 2 5

3 5 5 5
L 0

axpy
C 7 2 1 10

28 31 31 31
L 21 21

axpby
C 27 27

0 29 29 29
L 2 2

scal
C 13 2 1 16

33 36 36 36
L 20 20

copy
C 5 2 1 8

75 78 78 78
L 70 70

dot
C 1 2 1 4

1 4 4 4
L 0

softmax
C 1 1

0 0 0 0
L 0

relu
C 1 1

0 1 1 1
L 0
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Table 4.5: False positive matches identified by the discovery algorithm. Each of these
cases resulted from over-generalisation of constraint descriptions (e.g. incorrectly re-
moving constraints enforcing data dependencies), and was resolved by performing
input-output example-based testing of proposed code replacements.

Abinit Pathsample NWChem Darknet Parboil Total

scal 2 3 5
copy 5 2 7
dot 1 1

replacements. The results of this comparison are shown in Figure 4.7.
On all three networks, the suggested GPU implementation substantially outper-

forms the OpenMP implementation (which represents the best readily-available CPU
performance on an AMDprocessor). Speedups from 2.4× (DenseNet-201) to 9× (VGG-
16) were achieved. DenseNet-201 performs smaller matrix multiplications than the
other networks, and so benefits less from GPU execution due to communication over-
heads. These results show that the approach proposed in this chapter allows for pro-
grammers to port applications to other platforms, without having to support multiple
code bases for each possible implementation.

4.6.3 Library API usage

Across the libraries evaluated, Annote was able to synthesise 11 different classes of
function. Because the libraries share common functionality, many computations are
implemented multiple times (this is, of course, what drives the ability to migrate
between libraries). For the sake of simplicity when reporting the results in this sec-
tion, functions performing the same computation are considered together in the same
class. For example, cublas_sgemm, cblas_sgemm and clblast::Gemm<float> are all
considered together under the gemm class.

For each of the 11 function classes that could be synthesised by Annote, Table 4.4
lists the number of instances in application code where the generalised constraint
matching procedure identified a match with a library function.

Some of the applications examinedmake extensive use of library functions. For ex-
ample, Abinit links against an installed standard BLAS library, and so all the instances
detected in its code are from inlined library calls. Other applications bundle their own
implementations; this code is detected rather than the corresponding call sites which
results in a smaller overall number of matches. Table 4.4 distinguishes between these
two cases (rows C and L for original code and inlined library functions, respectively).
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4.6.4 Synthesis

The time taken byAnnote to correctly synthesise each library program is acceptable for
its usage model; every example could be synthesised in under 4 hours on a desktop-
class machine, with examples that use shorter instruction sequences taking far less
time. Synthesis time was not a primary goal of the work in this chapter, as learning
the behaviour of a function for the refactoring workflow suggested is a one-off task. If
synthesis time were to become a bottleneck, the literature suggests several approaches
to improve performance [68, 139]; implementing these is beyond the scope of this
chapter.

4.6.5 Matching

Table 4.4 shows the results obtained when searching for code satisfying the generated
constraints for each function class. Four different versions of the constraints were
tested: those generated from a single example constraint-based program, generalised
versions from multiple programs, generalised with a post-processing step, and finally
with dynamic testing of replacements.

The constraints generated from a single program fail to discover many examples.
Only simple, inlined library calls are consistently matched by these constraints (Abinit
in Table 4.4, for example) as the inlined code is identical to the code from which
constraints are generated.

Subsequently, the graphmatching algorithmdescribed in Section 3.3was applied to
generalise constraints. These constraints aremore successful; many instances thatwere
not previously matched now are (e.g. in Darknet). Some instances such as gemm and
spmv were not discovered by the generalised constraints. This was due to a consistent
difference between Clang’s code generator and the synthesiser for nested loops. A
mechanical post-processing step fixed these constraints, allowing the corresponding
examples to be detected properly (gemm, gemv, spmv columns in Table 4.4).

Although these constraints generalisedwell, some false positivematches occur due
to over-generalisation (e.g. for scal, copy inNWChemandDarknet), because ofmissing
data dependencies in code that interleaved other work with the learned function (for
example, returning to Listing 4.1, the left hand code contains such interleaved work).
These false positives did not occur for every synthesised library function, and only
occurred for “C” matches (i.e. original application code, rather than inlined library
functions) in NWChem and Darknet. Table 4.5 summarises these false positives.

To address over-generalisation, dynamic testing of suggested replacements was
performed. When a suggestion is made, the surrounding code can be isolated and
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tested using IO examples (similarly to the testing process for entire functions used to
determine correctness of synthesised candidates). If any difference in behaviour is
observed, then the suggested replacement is invalid. Applying this additional check
eliminated all false positives observed when using previous versions.

The only example not to be discovered in any of the test applications was softmax;
it was implemented in the application code using a common numerical trick where
the input data is shifted uniformly by its maximum value. Annote’s synthesis is not
able to learn this approach as the resulting code is not “intuitive”. Fortunately, it was
not a significant contribution to execution time in the programs examined.

4.6.6 Soundness

There are a number of ways in which unsound behaviour can arise when using the
synthesis, generalisation and replacement suggestion tools implemented in this chap-
ter.

Random IO examples may not capture the full range of a function’s behaviour.
This is a limitation sharedwithmany approaches to synthesis; relying on observational
equivalence is a commonassumptionmadeby synthesiserswhenno formally verifiable
specification is available. Additionally, the motivation for this chapter provides a
useful heuristic that observational equivalence is an acceptable assumption; because
the functions examined are performance-critical kernels, they are unlikely to produce
different or irregular behaviour on a sparse subset of their inputs (as doing so would
almost certainly impact performance).

Annote may fail to synthesise a library function at all; not all functions have
behaviour that can be captured by the fragments and heuristics used for synthesis in
this chapter. If this is the case, the function is simply ignored. The refactoring and
replacement workflow suggested in this chapter is able to produce useful performance
improvements on a number of real-world applications, despite not being able to learn
every individual library function.

False positives and negatives can occur when matching constraints. The results
in this chapter demonstrate that the generated constraints generalised well to detect
complex examples, and that false positives can in fact be readily eliminated by dynamic
testing.

While these sources of unsound behaviour can and do affect the workflow in some
cases, the actual effects are not critical to the practical application of the tools described
in this chapter.
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4.7 Related Work

The work in this chapter relates primarily to sketch-based program synthesis [48]. In
particular, Annote draws on the idea that a program sketch does not have to be
supplied up-front by a user, but can be identified by the synthesiser performing an
initial search [62]. This chapter identifies a midpoint between user-supplied sketches
and complex structural filtering: by encoding informally-knownproperties of an oracle
interface, informative sketches can be obtained through a comparatively lightweight
search process.

While Annote uses a set of input-output examples to specify the correctness of
potential solutions, it differs from common programming-by-example (PBE) method-
ologies in that it assumes examples are plentiful, cheap to generate, and potentially
uninformative. In contrast, other PBE implementations often presume particular prop-
erties of their inputs [80], or apply constraints to their generation [81] in order to
maximise the information gained from each example.

4.8 Conclusion

Porting existing code to exploit accelerator libraries is a challenging problem for pro-
grammers. Understanding the behaviour of existing and new libraries requires signif-
icant work on the programmer’s part.

This chapter presents two main contributions to help with this API evolution:
a program synthesis technique that uses vendor-supplied type annotations to infer
partial control flow structure for potential solutions, and a novel workflow for API
migration based on approximate graph-matching from constraint descriptions. Using
this approach produced significant improvements to the performance of existing, real-
world scientific applications.





Chapter 5

Improved Synthesis using Learned

Probabilistic Models1

Chapter 4 introduced a system (Annote) capable of synthesising equivalent implemen-
tations for library functions, based on their type signature and andmanual annotations
describing semantic properties of their interface. While this approach allowed for the
behaviour of complex library functions to be correctly modelled, it was not fully auto-
mated in its approach (annotations must be provided by an expert user for each new
library targeted).

Clearly, a more general solution is desirable. Ideally, new libraries would require
no up-front manual intervention to be compatible with a synthesis-based solution as
described previously. To this end, this chapter describes the motivation and design of
a synthesiser (Presyn) that uses probabilisticmodels to predict the most likely structure
of solutions, based on observations made of an existing corpus of examples.

Because library functions are diverse, covering a wide range of problem domains,
the training and evaluation sets used to train Presyn are important. To do so, a
representative set of examples from the synthesis literature and existing libraries is
collected and normalised to a common specification format. Collecting this corpus is
a non-trivial undertaking, and represents a substantial contribution to the field.

The usefulness of synthesis as a way of driving API migration problems of this
kind is predicated on how many functions can actually be synthesised successfully.
To evaluate Presyn with respect to this metric, Section 5.7 compiles an extensive set of
synthesis benchmarks from existing literature and library source code. Amethodology
that allows for the fair preparation of synthesis examples and comparison of results
for different synthesisers on this dataset is prepared. Then, in Section 5.8, four leading
program synthesisers (as well as Annote) are evaluated against Presyn following this

1This chapter is based on published research in Collie et al. [5].
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methodology.

5.1 Black-Box Oracle Guided Synthesis

As previously identified in Chapter 4, modelling and understanding the behaviour
of software components is a key issue in software engineering [140]. While a formal
model (for example, source code or a full specification) of such a component may be
available, this is often not the case in practice. Components are frequently supplied as
low-level binaries, network services or hardware [96]. In some cases, partial insights
about a component’s behaviour may be suggested by its interface, but such examples
are in the minority. To develop tools capable of modelling all software components, a
way of understanding these “black-box” components is necessary.

For the sake of wide applicability, this chapter makes the minimal possible set of
assumptions of black-box component interfaces. The only requirements are that it
exists in an executable form, and has a known type signature; a significant relaxation
of constraints from Chapter 4. The concrete mechanism by which the component is
executed is intentionally left abstract; while the tools implemented in this chapter use
the C foreign function interface to load and call shared libraries, other mechanisms
such as direct memory access or network requests could be substitutedwith no change
to the underlying problem specification.

This set of assumptions instantiates an oracle-guided synthesis problem belonging
to the most restricted class described by Jha and Seshia [50]. The aim of synthesis
is to produce a program that behaves equivalently to a target oracle, which performs
an unknown computation. No knowledge of the oracle’s internal structure is avail-
able, but capturing its behaviour in the form of input-output pairs (IO examples) is
inexpensive. Richer oracle-guided problem contexts allow the oracle to provide min-
imal counterexamples or formal verification of possible solutions; none of these are
available for black-box oracles.

The problem of synthesis from a black-box oracle bears some similarity to pro-
gramming by example, which has received considerable interest from industry [141].
Here, the aim is to synthesise a program from handwritten, user-provided examples of
correct behaviour [80, 142]. Black-box synthesis cannot rely on any particular structure
of the examples it consumes (for example, Leung et al. [143] require a user to provide
increasingly specific disambiguating examples to guide synthesis).
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5.2 Approach

The available information in the context of a black-box oracle-guided synthesis problem
is limited: only the type signature anda collectionof input-output examples are known.
To decrease the size of the space of programs that must be searched through to find a
correct solution, a relevant interpretation of either or both of these must be obtained.

Beyond their use in determining correctness for a potential solution, some previous
work has aimed to introspect on the structure of input-output examples to determine
likely solution structure. DeepCoder [79] uses a neural network to learn structural fea-
tures of input-output examples in a functional language (for example, that a particular
target oracle always returns a shorter list of values than it is passed as an argument).
However, generalising this type of neural approach to environmentswhere fewer struc-
tural properties are available has proved challenging, especially when examples are
larger than a few elements in size [84].

However, Chapter 4 demonstrated that the type signature of a component can often
be interpreted by a user to provide precise semantic information about the behaviour
of that component. While the manual annotation process used in that chapter is
not generally available for black-box oracles, the type signature is. If the underlying
features of a type signature that map onto program structure could be learned and
predicted, then some aspect of the annotation process and heuristic mapping could be
replicated without user intervention.

This insight yields the approach developed in this chapter: to build an annotated
ground-truth dataset of synthesis problems and their solutions, then to train a model
that can predict a likely solution to a problem based on its type signature.

5.3 Models

Presyn uses two successive probabilistic models to predict program structure based
on the type signature from the synthesis problem. This section introduces the features
learned predicted by these models, and explains the training process and internal
working of each one.

5.3.1 Features

Chapter 4 uses program sketches to describe partial structures that are likely to appear in
the solution to a synthesis problem. Each correct solution corresponds to a composition
of sketch fragments (using the sketch notation introduced in Section 3.5). For example,
a problem containing a nested loop structure might use the composition loop◦loop
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for an appropriate fragment loop.
These compositions of fragments can be easily interpreted as a feature vector for

the relevant synthesis problem: if the vector of fragments can be predicted accurately,
then a great deal of the synthesis problem can be solved cheaply (as is demonstrated
in Chapter 4).

Because each synthesis problem permits a different set of valid program fragments
(for example, loop(x) is only valid when the problem signature contains a parameter
x), the training and prediction steps for the two models deal with both fragment classes

and fragments at different times. The distinction between the two will be made clear
when appropriate.

5.3.1.1 Definitions

This section briefly states the formal definitions for the inputs to and outputs from the
models described in this section. The synthesis interpretation of these will be given
fully in later sections.

5.3.1.1.1 Inputs The input feature vector x to both models is the type signature for
the problem, encoded as a list of pairs:

x , [(C0 , ?0), . . . ] (5.1)

where each C8 ∈ N identifies the base type of the 8th parameter to the function (e.g. the
base type of both int and int** is int ), and each ?8 ∈ {0,1} identifies whether the
type is a pointer. This encoding is a simple mapping from the subset of the C type
system defined in Chapter 4 to a format that can be consumed by a model without
processing character-level information.

Parameter names are not used by this encoding; while the name of a parameter
might encode semantic information (e.g. a parameter int size is marginally more
likely to represent a loop bound than int a ), to preserve the minimality of the
problem context any names are discardedwhen encoding a signature. Without names,
parameters are uniquely identified by their index. Where it aids clarity, names may be
added back into examples.

5.3.1.1.2 Outputs Two output features y and ?< are defined; one for each of the
models used by Presyn. The first is an unordered set of fragment classes:

y , {ci , . . . } (5.2)

where each ci is a unique internal identifier for a fragment class.
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The second is a probability mass function supported on the set of pairs of concrete
fragments from the set �:

?< : (�×�) → [0,1] (5.3)

5.3.2 IID

The first step taken by Presyn is to predict which classes of fragment are likely to
appear (as any possible instantiation) in a correctly synthesised solution.

Suppose 50 , 51 , . . . , 5= is an ordered sequence of fragments that when composed,
produces a correct solution for a synthesis problem. The aim of Presyn’s first model,
IID, is to predict an initial set of fragments F0 that matches { 50 , 51 , . . . , 5=} as accurately
as possible (without considering ordering). This model is given the name IID as each
fragment in F0 is presumed to be equally likely to occur in a synthesised solution,
independently of the presence of each other fragment (that is, they are independent
and identically distributed). By way of comparison with Chapter 4, Annote performs
a similar prediction task deterministically, using rules matched against property anno-
tations.

The deterministic approach used by Annote, while easy to interpret and precise on
the small set of performance-sensitive functions targeted for evaluation, is limited in
two key ways. Firstly, and more generally, manual annotation of interface properties
is required to consider a new function, and new heuristics are similarly required to
add new fragment templates. Secondly, specifically motivating the development of
IID is the issue that Annote may not select precisely the correct set of initial fragments:
if its heuristics do not model the required semantics, then a solution can never be
synthesised.

Presyn retains a single, limited aspect of Annote’s deterministic approach to frag-
ment selection, but does so through observations of input-output examples rather than
through type signature annotations. IID provides a probabilistic prediction of the set
{ 50 , 51 , . . . , 5=}. These two sets of fragments are written FS and FP below (for Semantic
and Probabilistic, respectively).

Fragment Semantics While attempting to determine the initial fragment set using en-
tirely deterministic methods does not scale well, some properties can be inferred
cheaply by making observations of the behaviour of the target function, based
on the input-output examples generated for testing. For example, if a memory
region is written to in any of the observed examples, then that region represents
an output reference parameter. If such parameters are present, then the set of
fragments capable of performing output is collected as FS.
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Classification Model As well as semantic knowledge, a classification model is used
to determine inclusion in F0 for non-output fragments. To do so, a random forest
model is trained to predict inclusion-exclusion classifications for each fragment
class, given a function type signature as input. This trained model provides a
decision function % that determines fragment inclusion in F0; producing such a
model requires a small corpus of training data (type signatures and F0 for a set
of successfully synthesised programs).

Writing FP for the set of fragments satisfying the trained decision function %, the
final prediction for a particular synthesis problem combines these two components:

F0 , FS ∪ FP (5.4)

It is clear that it is safe for the prediction of F0 to over-approximate the true initial
set: if additional irrelevant fragments are present, synthesis will be slower but will
still eventually discover a correct solution. However, F0 may in fact be an under-
approximation. If this is the case, then similarly to Annote, correct solutions may
never be considered. This problem is addressed by the second complementary model
in Presyn’s synthesis process: Markov.

5.3.3 Markov

The approximate set of likely initial fragments F0 (as predicted by the IID model)
represents the starting point for synthesis. However, for this set to be useful for
synthesis, two issues must be resolved.

Firstly, the order in which the fragments are to be composed should be determined.
Annote is able to revert to an enumerative process here, as the number of potentially
matching rules for a given synthesis problem is small, preventing intractable exponen-
tial increases in the size of the solution space. No such guarantee can be made in the
case of Presyn, so correctly ordering fragment compositions is an important part of the
synthesis process.

Secondly, because IID can under-approximate in its prediction of F0, the remaining
parts of the synthesis process should be robust to this. That is, fragments not included
in F0 should be considered at some point, rather than being discarded entirely.

To predict fragment orderings, a different assumption on the structure of the same
training data is required. Presyn’s second model, Markov, observes bigrams of frag-
ment occurrences under a Markovian assumption. That is, the sequence of fragments
forming a correctly synthesised solution is treated as if it had in fact been generated by
aMarkovmodel. The following definitions are used to define the underlying structure
of such a model, so that the transition probabilities can then be learned.
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First, auxiliary fragments 5start , 5end are defined. In the sketch language semantics
defined in Section 3.5, both act as the identity under composition with any other
fragment. Then, a weight function F is defined such that F( 5 , 5 ′) represents the
number of occurrences of the composition 5 ◦ 5 ′ in a particular training set.

Given these definitions, ordered sequences of fragments (representing composi-
tions) can be sampled as follows. First, define:

B( 5 ) ,
∑
5 ′∈F

F( 5 , 5 ′) (5.5)

Then, starting from the auxiliary fragment 5start, fragments can be sampled from
the conditional probability distribution:

PF( 5= | 5=−1) =
F( 5=−1 , 5=)
B( 5=−1)

(5.6)

That is, the fragment 5= is sampled after 5=−1 with probability proportional to the
ratio of observed compositions 5=−1 ◦ 5= to all occurrences of 5=−1. This distribution
resolves the first issue with IID identified above (ordering), but does not yet address
the second (under-approximation). To do so, an augmented weight function F′ is
defined:

F′( 58 , 59) , F( 58 , 59) if 59 ∈ F0

, 0 otherwise
(5.7)

The augmented weight function assigns non-zero weights only when the second
fragment 59 is contained in the set predicted by IID (i.e. the “likely” fragments are
assigned a weight, while “unlikely” ones are not). Then, define B′ and P′F analogously
to B and PF :

B′( 5 ) ,
∑
5 ′∈F

F′( 5 , 5 ′) (5.8)

P′F( 5= | 5=−1) =
F′( 5=−1 , 5=)
B′( 5=−1)

(5.9)

These definitions reflect an additional prior on predicted sequences of fragment
compositions: what is the probability that fragment 5=−1 is followed by fragment 5= ,
given that 5= was classified as “likely” by the IID model?

Finally, a variable weight can be given to the classifications made by IID (i.e. to
reflect the level of certainty that it has predicted the set F0 correctly). This parameter
1 ∈ [0,1] allows a final conditional probability to be defined:

P( 5= | 5=−1) = 1P′F( 5= | 5=−1)+ (1− 1)PF( 5= | 5=−1) (5.10)
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Higher values of 1 weight Markov’s predictions more heavily towards the “likely”
fragments selected by IID (i.e. P′F is given more weight). For 1 = 1, unlikely fragments
are never selected, and for 1 = 0, IID is not considered at all. Through trial and error,
1 = 0.8 was selected for Presyn as implemented.

A sequence of fragments 50 ◦ · · · ◦ 5= can be generated by sampling transitions from
the Markov model induced by this distribution until 54=3 is sampled, or to a fixed
maximum length. The sequence is then folded over the fragment composition operator
◦ to produce a sketch.

5.3.4 Training

Both models (IID and Markov) are trained using the same annotated dataset. For each
synthesis problem in the dataset, its type signature and a sequence of fragments that
leads to a correct solution are provided as training data. The method by which this
training data is collected in practice is given in Section 5.6; this section describes the
training process once a suitable corpus has been assembled.

IID: A random forest ensemble of 64 trees and a maximum decision depth of 5 is
trained on the dataset, with internal splits at ≥ 2 nodes, and leaves containing
≥ 1 node. To validate the accuracy of the trained classifier, a 20% subset of the
data is left out from the training set.

Markov: The weight functions F and F′ can be trained by direct observation of
the training dataset; no further processing other than prepending 5BC0AC and
appending 54=3 to the fragment sequences is required. Once this is done, bigram
sequences can be directly counted and used to build the weight functions.

5.4 Synthesis

Presyn retains the core low-level synthesis loop introduced by Annote in Chapter 4,
using the program manipulation primitives from Section 3.6.1 to refine sketches into
concrete programs. This core synthesis loop is summarised in Algorithm 4.

The novel improvements made by Presyn, as compared to Annote, relate to the
automatic identification of plausible program sketches for a synthesis problem based
onlyon its interface. Once sucha sketch is identified,Presynuses the sameprocedure as
Annote to search for a correct instantiation of that sketch, and to test it for observational
equivalence to the original synthesis oracle.

In brief summary, the process followed by Presyn (and presented in Algorithm 4)
is as follows. First, the two models (IID and Markov) are trained on an appropriate
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Algorithm 4 Presyn’s core synthesis loop. This loop assumes that IID and Markov
have been trained, and that the set of initial fragments F0 has been predicted and used
to instantiateMarkov. Values are sampled from the live set using a proximity-weighted
heuristic.
1: function Synthesise(Markov, 4G0<?;4B)
2: B:4C2ℎ← output sampled from Markov
3: loop

4: for each ℎ>;4 in B:4C2ℎ.ℎ>;4B do
5: recompute live values and dependencies
6: ;8E4← proximity-sorted live values at ℎ>;4
7: E← sample geometrically from ;8E4

8: if ℎ>;4.CH?4 is compatible with E.CH?4 then
9: Rauw-NT(ℎ>;4 , E)
10: end if

11: end for

12: ?A>6A0<← B:4C2ℎ.2><?8;4()
13: if ?A>6A0< satisfies all 4G0<?;4B then
14: return ?A>6A0<

15: end if

16: end loop

17: end function

representative dataset of synthesis problems; this is a one-off process and does not
need to be repeated for each new problem. Then, the type signature for the current
problem is used by IID to predict the set of initial fragments F0. This predicted set is
combinedwith the set of global bigramobservationsF to produce the problem-specific
Markov model.

Given the problem-specific Markov model, a sketch is produced by sampling frag-
ments until 54=3 or a fixed size bound is reached. The symbolic holes in this sketch are
filled iteratively using the same proximity and type prioritisation introduced in Sec-
tion 4.4.3 to produce an executable program. This program is executed and tested for
observational equivalence using the same input-output example generation method-
ology described in Section 4.4.4.

If a sketch does not yield a correct solution after a set number of candidates (for
Presyn as implemented, 1000) have been generated from it, then it is discarded and a
new sketch is sampled from Markov, restarting the process.
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5.5 Comparing Synthesisers

Benchmarking program synthesisers against each other fairly while allowing for dif-
ferences in specification and expression is a challenging problem [46, 47]. To fairly
evaluate Presyn’s performance, a set of comparable synthesisers must first be identi-
fied, and their relative strengths, weaknesses and biases characterised. This section
describes how a set of 4 leading synthesisers (along with Annote, as implemented
in Chapter 4) was identified, as well as an overview of their respective target lan-
guages and problem domains. Finally, an examination of how synthesis problems are
prepared for each implementation is carried out.

5.5.1 Survey

To identify synthesisers against which Presyn could be evaluated, a survey of the
recent program synthesis literature was carried out. Synthesis research papers were
evaluated with respect to the following criteria:

Domain Fit For a synthesiser to be evaluated against Presyn, the programs it syn-
thesises need to be in broadly similar target domains. That is, the programs
should be general-purpose programs that potentially contain control flow (such as
conditionals or loops).

This requirement rules out a wide class of domain-specific synthesisers such
as Cosette [144] or Nonograms [54] that produce programs in a limited, often
Turing-incomplete, target DSL. In these contexts, techniques such as SMT solvers
can often be deployed to handle difficult exhaustive-search procedures; these
solvers do not yet scale to modelling general control flow without extensive user
input.

Additionally, synthesisers such as Helium [96] that synthesise programs in a
general-purpose target language, but require significant assumptions to bemade
about the semantics of the target program are also ruled out by this criterion. For
example, Helium requires that the programs it synthesises specifically represent
image-processing kernels.

Leading Performance The synthesisers chosen should represent leading performance
on their respective target domain; there is no sense in evaluating implementa-
tions whose performance has been substantially superseded on their own set of
benchmarks.

Implementation Variety To ensure a broad comparison, different synthesis strategies
should be used as far as possible by the implementations chosen for evaluation.
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By doing so, relative advantages and shortcomings of Presyn’s approach can be
observed more clearly than they could be if it were benchmarked solely against
synthesisers using only a single style of implementation.

Artefact Availability Evaluating the set of chosen synthesisers fairly against Presyn
requires that each implementation provides a runnable artefact. Without this,
only the original results quoted in each paper could be used for evaluation,
preventing a fair cross-evaluation.

5.5.2 Implementations

Following the criteria above, a comprehensive reviewof the synthesis literature yielded
the following 4 implementations to evaluate Presyn against:

SketchAdapt is a neural synthesiser that aims to strike a balance between generative

and search-based approaches [84]. Where its neural models identify a program
close to an existing one from its training dataset, it is able to directly generate
program structure from an internal generative model; doing so is more efficient
than performing exhaustive searches. However, its novelty lies in its ability to
combine this approach with traditional search for examples that are less similar
to the training set (and, indeed, to interpolate between the two, picking the
correct point at which to abandon the generative approach). It represents the
state-of-the-art synthesis performance on general programs achieved by a neural
model.

Makespeare uses a genetic algorithm over an abstracted model of x86 assembly to
synthesise programs containing loops [72]. Its novelty over previous approaches
is a novel hill-climbing algorithm that delays the acceptance of intermediate
programs; doing so provides an evolutionary advantage to programs that gen-
eralise successfully across a set of examples. It targets constrained assembly-like
languages that can be translated to executable programs (x86 assembly, or the
fictional tis-100 computer-game language). Synthesis problems are specified by
providing the initial and desired final abstract machine states (i.e. registers and
memory).

Simpl synthesises imperative programs written in a small C-like language [70]. This
language permits looping control flow structures; the key innovation developed
for Simpl is the use of static analysis techniques to prune the search space of
candidateprograms. Doing so ensures that dead-end candidates arenot explored
unnecessarily (for example, asserting that a looping program with an incorrect
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upper bound could never write to a location that has been modified between
input and output).

���222 targets a polymorphic �-calculus with recursive algebraic data types (for example,
functional lists and trees) [77]. By constructing and attempting to refute type-
correct hypotheses about the structure of candidate programs (e.g. can the map
combinator in a given subexpression ever satisfy the problem’s constraints?), �2

can quickly narrow down its search space. Synthesised programs are subject to
a structural cost function that ensures they are theminimal correct program with
respect to the particular set of input-output examples used.

Additionally, Annote (Chapter 4) is considered as a baseline implementation to
evaluate Presyn against. By doing so, the advantage gained by using flexible proba-
bilistic predictions over a set of hand-coded heuristics can be quantified.

5.5.3 Synthesizer Help

All of the synthesisers listed above canbe loosely considered as black-box, oracle-driven
synthesis, as each of them specifies correctness for a particular synthesis problem as
observational equivalence over a set of input-output examples (rather than through
formally-verified equivalence to a specification).

However, each synthesiser (including, to an extent, Presyn) requires additional user
help to search for and construct solutions. This help is in the form of non-correctness
specifications that provide hints or direction to the structure of a potential solution.
These additional specifications cannot be used to determine whether or not a solution
is correct, but do allow the search procedure to reach that solution more efficiently.
Additionally, it is worth distinguishing between help at the dataset level and help at
the problem level. All synthesisers encode some kind of heuristic about the structure
of solutions into their search process; these help to guide search but are different from
(and easier to provide than) help provided for individual problems.

To fairly evaluate synthesisers against each other on a shared dataset, it is important
to clearly state the scope of this additional help for each synthesiser; doing so allows
for their underlying assumptions and models to be made clear. In Section 5.5, a
methodology for comparing these synthesisers both with and without the additional
assistance they make use of is presented.

The additional help used by each synthesiser evaluated in this chapter is as follows:

Annote uses a library of hand-coded heuristic rules and program sketches at the
dataset level, and requires a set of semantic property annotations to be provided
by the user for each new synthesis problem.
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Presyn requires a model pre-training step (to instantiate IID and Markov on a set of
representative problems), but does not require any additional user assistance for
new synthesis problems.

SketchAdapt also requires a model training step before synthesis begins (with far
more data required than for Presyn, owing to its use of neural network models).
It does not require any additional assistance for new problems.

Makespeare requires that a particular set of its abstract machine’s registers be in-
stantiated with relevant values (for example, that a loop upper bound should be
placed in one register). Additionally, the structure of the input-output examples
used to specify a problem must be carefully chosen to encourage the genetic
algorithm to converge on a fully general solution.

Simpl relies on the user providing (by hand) a partial program sketch for each new
problem, aswell as a set of relevant integer constants that appear in computation.

���222 uses a standard library of functions and combinators (essentially acting as program
sketches in the functional context). Additionally, when supplying input-output
examples for a new problem, the user is required to explicitly cover the recursive
base-case for that problem.

5.6 Evaluation Dataset

Evaluating program synthesisers against each other fairly is a long-standing goal of
the community. However, the wide spectrum of different target languages, synthesis
styles, and user assistance given makes it extremely difficult to do so in practice. Dif-
ferent implicit assumptions, search procedures, and problem inputs can mean that an
easy problem for one synthesiser might be pathologically hard for another. This chal-
lenge has not escaped the community; attempts to compare even similar synthesisers
on common tasks are fraught with subtle problems. For example, one recent paper
[46] observes:

A more salient observation is the difficulty of comparing these methods due to
drastically different intended applications, despite the commongoal of program
synthesis. (Pantridge et al. [46], p. 1)

The comparison presented in this paper highlights the difficulty of using bench-
mark problems to compare IPS [Inductive Program Synthesis] methods . . . the
most conclusive finding that has come out of this comparison is that not all
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Table 5.1: Groups of synthesis benchmark problems

Group N Description

makespeare 11 Problems that require loops to manipulate arrays of integers in
place. The full set of benchmarks from [72] are used, modulo
those adapted from [70].

simpl-int 15 Arithmeticmanipulations of integer values, requiring loops and
data-dependent control flow; the full set of integer benchmarks
from [70] are used.

simpl-array 12 Problems stated over integer arrays, with different styles re-
quired (e.g. pairwise iteration, reductions and elementwise
computation); the full set of array benchmarks from [70] are
used.

�2 8 Singly-nested integer linked-list manipulation problems from
[77], restated for other synthesisers as array problems.

SketchAdapt 10 A series of generated list problems, taken as representative sam-
ples from the 500 program evaluation file presented by [84].

string 16 The C standard library’s string processing functions [145]. Im-
pure functions such as strtok are removed.

mathfu 15 Vector-scalar andvector-vectormathematical functions from the
Mathfu [146] library.

blas 4 Matrix-vector linear algebra functions from the BLAS [147] stan-
dard as synthesised in [1], disregarding functions such as spmv
for which extensive assistance was required.

dsp 21 Vector- and matrix-based signal processing functions from the
TI signal processing library [148], adapted for platform porta-
bility and removing functions with requirements for extensive
constant data such as filter taps.
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IPS systems can be applied to the same problems. This makes comparison
extremely difficult. (Pantridge et al. [46], p. 7)

This section presents a methodology for assembling a set of benchmark problems
that can be used to fairly, consistently and reproducibly evaluate the program syn-
thesisers listed in Section 5.5. While the methodology presented is (at least partially)
specific to the synthesisers listed previously, it is hoped that the broad goals and tech-
niques used to prepare the common set of benchmarks can be generalised to more
general applications in the future.

First, a common language subset is established such that all the synthesisers under
consideration are able to interpret every collected benchmark problem. Then, the
methods by which these problems should be obtained are considered (should they be
curated by hand, or generated randomly somehow?). With that in mind, a concrete
set of examples is described and listed in detail. Finally, the procedure required to
elaborate this list into equivalent inputs for each synthesiser is described.

5.6.1 A Common Language

As stated above by Pantridge et al. [46], not all synthesisers can be applied to the
same set of problems. As a result, for fair cross-evaluation of synthesisers, it is neces-
sary to identify the subset of their features that are shared and can be meaningfully
compared.

For the synthesisers evaluated in this chapter (Presyn, Annote, SketchAdapt,
Makespeare, Simpl and �2), the shared set of features can be stated concisely as nu-

merical programs operating over scalars, lists, or arrays of values, where each value is either

integral or floating-point.
This definition intentionally allows for some difference of expression between syn-

thesisers. For example, �2 implements lists of values as a recursive algebraic data type,
whileMakespeare operates over a region ofmemory in an abstractmachine. The intent
here is to allow for comparisons where two synthesisers are able to produce the same
abstract computation under their own domain interpretation. For example, Figure 5.1
shows a solution produced by several synthesisers to the same synthesis problem.

While restricting the set of synthesis features under comparison does entail a dis-
advantage for some implementations (e.g. �2 is able to synthesise programs operating
on more complex types such as trees, and SketchAdapt can be parameterised by cus-
tom DSL operations) at the expense of others, it provides a consistent way to compare
results across all implementations. Making this assumption explicit means that the
synthesis results on this set of benchmarks (see Section 5.8) can be fairly interpreted.
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define i32 @f(i32 %0) {

br label %2

; %2

%v1 = phi i32 [0,%1],[%v5,%6]

%v2 = phi i32 [0,%1],[%v7,%6]

%v3 = icmp sle i32 %v2, %0

br i1 %v3, label %4, label %8

; %4

%v5 = add nsw i32 %v1, %v2

%v7 = add nsw i32 %v2, 1

br label %2

; %8

ret i32 %v1

}

Presyn
0: JNZ 6

1: ADD [r8]

10: ARG [r2]

11: IMUL [r8]

15: JZ 20

18: JMP 22

23: ARG [r2]

26: ADD r0

27: SHR 1

Makespeare

fun a ->

a + (sum (range a))

�2

fun n ->

r = 0;

while(n > 0) {

r = n + r;

n = n - 1;

};

return r;

Simpl

int f(int x) {

int v1 = 0;

for(int i = 0; i <= x; ++i) {

v1 += i;

}

return v1;

}

Specification

Synthesise

Figure 5.1: From a common problem specification (prepared as C code as described
in Section 5.6.3.3), different synthesisers each produce a solution in their own output
language. The specification at the top of the figure is taken from the Simpl [70]
benchmark set, and represents the computation

∑#
8=0 8 (i.e. the sum of the range [0, #]).

Not shown in this figure is the intermediate generation of implementation-specific
inputs based on the common specification (see Figure 5.2). For brevity, outputs from
Annote and SketchAdapt are not shown.
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5.6.2 Methodology

Two broad approaches to collecting a dataset of synthesis problems are viable: ran-
dom syntax-guided generation of examples using the sketch language described in
Section 3.5, or manually sourcing and annotating examples from existing sources.

5.6.2.1 Random Generation

Using randomly or semi-randomly generated programs as a synthesis benchmark
dataset is appealing from the perspective of automation; existing work has demon-
strated that models for complex prediction tasks can be trained effectively using ran-
domexamples. For example, Cummins et al. [149] achieve state-of-the-art performance
on a well-studied classification task (determining whether an OpenCL kernel should
be scheduled on the CPU or GPU for optimal performance) by synthesising large
numbers of OpenCL programs using a recurrent neural network. It is plausible that
a similar process could be used to generate useful, representative synthesis problems
for cross-evaluation.

For such randomly generated examples to be useful, it is important for them to
(in aggregate) demonstrate sufficient variability, and to cover the space of synthesiser
features effectively. The set of benchmark examples produced by random generation
should be sufficiently interpretable that this property is practical to verify.

5.6.2.2 Manual Sourcing

Alternatively, benchmark examples can be collected by a process of manual curation:
a human expert decides what examples are representative of the relevant problem
domain, and collects these examples into a dataset. Doing so clearly requires more
marginalwork per example collected (though the up-front work to produce a valid ran-
domgenerationmethodologymaybe less), but benefits from increased interpretability.

Collecting examples in this way requires that such example benchmark problems
do in fact exist, and canbe readily identifiedand collected. For someproblems, thismay
not be the case (for example, some of the libraries used to evaluate Annote are closed-
source). Additionally, while ensuring that the underlying generation methodology
for random examples is free of bias is important, it is also so for an expert curator:
choosing examples manually can equally introduce bias into the dataset.

5.6.2.3 Conclusion

For the evaluation of Presyn described in this section, manual collection of synthesis
benchmark examples was identified as the most suitable methodology. The most im-
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portant reason for doing so was to match the original motivation for this thesis: learn-
ing functions that behave compatibly with existing library functions. No compelling
method for randomly generating reliably executable library code was identified, and
even state-of-the-art automated collection of real-world library code cannot yet make
that code executable (as opposed to simply compilable) [150]. Additionally, curating
examples allows for a more direct comparison with other program synthesisers: in-
spection of their respective evaluation datasets allows for Presyn’s dataset to cover the
same ground more easily.

5.6.3 Sourcing Examples

This section describes how a large set of representative synthesis benchmark examples
was collected to evaluate Presyn against the other synthesisers listed in Section 5.7.
Two primary sources for these examples were considered: the existing benchmark
datasets used for existing synthesisers, as well as functions from existing, well-known
software libraries (similarly to Chapter 4, but without the specific goal of identifying
performance bottlenecks).

5.6.3.1 Benchmarks

Each of the synthesisers selected to evaluate Presyn against has a set of benchmark
problems on which they were originally evaluated. Typically, these problems are in
large part taken from previous work, which is useful for cross-evaluation and compar-
ison of results across papers. Unfortunately, the reuse of benchmarks is more vertical

than horizontal. That is, implementations tend to reuse benchmarks from previous
similar implementations that they supersede or improve on; it is far less common
to adopt benchmarks from conceptually different synthesisers or competing parallel
implementations.2

To address this issue, the set of benchmarks used to evaluate Presyn is partially
derived from each competing synthesiser’s benchmarks. From these sets, duplicate
problems were removed (for example, Makespeare is already partially evaluated on a
subset of Simpl’s benchmarks), as were problems inexpressible in the common synthe-
sis language described above.

The result of this process is a set of 56 unique problems (listed and described in the
top half of Table 5.1), each of which was originally used as a benchmarking example
for a competing synthesiser.

2There are, of course, a number of places where this is not the case. For example, the SyGuS research
project aims to standardise competition among syntax-guided synthesisers [66]. However, “in the wild”
it is more often the case that new techniques or implementations are tested on a fresh set of benchmarks.
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5.6.3.2 Black-Box Components

To provide an expanded set of benchmarks that support the primary goal of this thesis
(modelling and understanding the behaviour of black-box components through syn-
thesis), the initial set of synthesis benchmark problemswas augmentedwith additional
problems derived from real-world software libraries.

In Chapter 4, Annote is used to synthesise implementations of 11 functions shared
between a set of optimised mathematical libraries such as Intel MKL [28] or Nvidia
cuBLAS [124]. The evaluation in that chapter focuses on 11 specific performance
bottlenecks. To broaden the evaluation of Presyn’s synthesis abilities, a larger set of
similar library functions was collected (from theMathfumathematical library [146], as
well as BLAS functions [147] and the TI signal processing library [148]). Additionally,
given its popularity as a synthesis evaluation domain [81, 142, 151], string processing
functions from the C standard library [145] were also included.

After de-duplication and filtering for compatibility, these libraries also yielded 56
unique synthesis problems (listed by group in the bottom half of Table 5.1). Each of
these represents a real library function used in production application code.

5.6.3.3 Obtaining Code

For each of the 112 unique problems collected, a reference implementation that can
be used to collect input-output examples is required. Presyn uses the same interface
as Annote to do so (dynamically loading symbols from a shared library). For the
benchmarks corresponding to existing library functions, preparing a reference imple-
mentation simply requires a wrapper function that calls into the existing library.3

For thebenchmarksderived fromexisting synthesiser evaluations (excludingSketchAdapt),
no such existing code was available. To create reference implementations for these
functions, the English descriptions from their original papers were used to create im-
plementations by hand. For example, the paper describing Simpl contains descriptions
such as:

7. Given = and <, return
∑<
8== 8.

8. Given = and <, return
∏<

8== 8.

20. Multiply two arrays of same length into one array.

(So and Oh [70], p. 377)

3For the TI DSP library, the existing library distribution is platform-specific. Reference C code from the
library documentation was collected manually and compiled into a library to present the same scenario
as the other sources.
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This process of re-implementation was simple, and no descriptions proved difficult
to interpret. All of the reference implementations were independently verified by
Jackson Woodruff, a co-author of Collie et al. [5] to ensure that they matched the
intent of the original paper. For SketchAdapt, instead of English descriptions, training
examples written in an internal DSL were translated into C to produce reference
implementations.

Many of the example problems (as originally written) entail floating-point opera-
tions. However, some of the synthesisers under evaluation (Simpl, Makespeare) only
target integer operations. This limitation is somewhat artificial (it is easier to demon-
strate synthesis concepts over a domain with only one primitive type); to compensate,
integer versions of these problems are added to the dataset in parallel, representing
the same abstract computation.

At this point, every example in the collected dataset can be dynamically loaded
and executed by a test harness to produce input-output examples. A manifest file lists
the names and type signatures of each example so that they can be correctly loaded
and called.

5.6.4 Model Training

In Section 5.3.4, the training procedure for the models IID and Markov was described
abstractly (i.e. without reference to a particular dataset). This section explains how a
concrete training dataset was produced from the set of evaluation problems described
previously,

The example problems obtained from the sources listed above require annotation;
the original programs are not intended for inter-operation with Presyn, and so are not
annotated with the set of program fragments used to synthesise them. To finalise the
training set, these annotations must be added by hand.

In most cases, the fragments required to synthesise a particular example were
obvious from that example’s code; the high-level control flow represented by fragments
almost always maps well onto the original structure of the code.

An additional construction step could be performed to ensure that the added
annotations were in fact correct. To do so, an interactive tool was developed that
allows an expert user to act as if they were the synthesiser. Instead of fragments being
predicted by two probabilistic models, and instructions enumerated by filling typed
holes, the user selects the correct choices from the set considered by the synthesiser.
Because this process is somewhat labour-intensive, only those examples where the
correct annotation was ambiguous or unclear were annotated using this procedure.
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5.7 Experimental Setup

Sections 5.6 and 5.7 give details of a set of competing synthesisers and synthesis
benchmarks, respectively. This section describes the experimental methodology by
which these synthesisers can be fairly compared against each other on that set of
benchmarks.

5.7.1 Problem Preparation

The evaluation dataset described previously comprises a single shared library with
a dynamically-loadable symbol for each function. A test harness loads these symbols,
randomly generates input values, and observes the corresponding outputs.

For each synthesiser, the generated input-output values must then be converted
into the correct input format (Presyn and Annote are integrated directly with the test
harness and do not require additional preparation). A brief description of each of these
is:

SketchAdapt Serialised, binary, tool-specific Python data structures representing the
problem’s type signature, inputs and outputs. These structures are generated
using code adapted from the original SketchAdapt implementation.

Makespeare Textual format with register and memory states for the x86-like abstract
machine targeted by Makespeare. Both the initial and desired final states are
encoded in the same way.

Simpl Custom textual format containing a partial program sketch (parsed by Simpl to
begin synthesis), a problem type signature, a set of input-output examples, and
a set of integer constants to consider in synthesis.

���222 JSONfiles containing lists of input-output examples alongwith problemmetadata.
Because �2 targets a functional language, the problem type signature is inferred
from the examples.

For example’s sake, Figure 5.2 shows a problem specification as prepared for both
Simpl and �2 (SketchAdapt does not use a textual format, and Makespeare’s specifi-
cations are too verbose to include directly). A script was written for each synthesiser
to convert a shared set input-output examples into a problem specification, such that
each synthesiser is given as close to the same set of inputs as possible.
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{

"name": "f",

"kind": "examples",

"description": "",

"background": [],

"blacklist": [],

"contents": {

"examples": [

"(f 0) -> 0",

"(f 7) -> 28",

"(f 1) -> 1",

"(f 5) -> 15",

"(f 9) -> 45",

"(f 8) -> 36"

]

}

}

�2 Input
Examples

7 -> 28;

1 -> 1;

5 -> 15;

9 -> 45;

8 -> 36;

Partial Program

fun n ->

r = 0;

while(?) { ?; }

return r;

Int Comps

0,1

Int Var Comps

n,r

Simpl Input

int f(int x) {

int v1 = 0;

for(int i = 0; i <= x; ++i) {

v1 += i;

}

return v1;

}

Specification

Generate Examples

Figure 5.2: Example synthesiser inputs for Simpl (right) and �2 (left). These inouts are
generated automatically from a common reference specification (see Section 5.6.3.3).
Note that here, both inputs have implementation-specific help added: Simpl receives a
partial program sketch, while �2 has the "(f 0) -> 0" recursive base case explicitly
instantiated. Inputs for Presyn and Annote are not shown as they have no explicit
textual representation, inputs for Makespeare are omitted for brevity, and those for
SketchAdapt because they are in binary rather than text format.
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5.7.2 Varying Synthesiser Help

As discussed in Section 5.5.3, each synthesiser can make use of a different level of
per-problem help (i.e. specific direction for that problem, rather than dataset-level train-
ing). To evaluate the effect of this help on synthesis performance, two parallel sets of
experiments were performed.

First, each synthesiser was evaluated using help equivalent to its original presenta-
tion (that is, conditions as similar as possible to its original evaluation). Then, each one
is evaluated using the same per-problem help as Presyn, while retaining their training
phases if appropriate: only the type signature for each problem is given as help.

Section 5.5.3 describes the information given to each synthesiser; the specific in-
stantiation for each problem aims to match the original work as closely as possible.

Each implementation makes varying use of input-output examples: Simpl and �2

use static analysis techniques that become prohibitively expensive for large sets of
examples, while Makespeare requires large sets to converge on a solution. Synthesisers
were each given an appropriate subset of a “master” set of examples (such that the first
few examples, given to all implementations, are identical). Makespeare, Annote and
Presyn are all given 2,200 examples, while SketchAdapt, Simpl and �2 are given only
10.

5.7.3 Experiments

For each of the 112 benchmark examples, the following experimental procedure was
followed:

• Dynamically load the symbol (from the shared benchmark library) correspond-
ing to the current synthesis problem.

• Generate 2,200 random input examples, and run the reference implementation
on each of them to obtain a corresponding set of 2,200 outputs.

• Run each synthesiser’s preparation script on the input-output pairs to produce
an appropriate problem description.

• Pass the problem descriptions to the appropriate synthesisers in turn to attempt
synthesis.

• If a result is produced, then synthesis succeeds. Otherwise, time each synthesiser
out at 12 hours and record a failed attempt.

For implementations that can make use of additional per-problem help, this pro-
cedure is repeated with and without the additional help provided.
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5.7.4 Model Training

Every benchmark function in the evaluation dataset is annotated with the fragment
correspondences that allow Presyn’s internal probabilistic models (IID and Markov)
to be trained. To prevent the possibility of either over-fitting, or an unfair advantage
from considering the entire dataset in advance, thesemodels are trained on a randomly
sampled 20% subset of the evaluationdata. All synthesis results quoted in the following
section are obtained using this training split.

5.8 Results

This section presents the experimental results obtained by following the experimental
procedures described in the previous section. First, the number of synthesis problems
solved successfully by each implementation is examined, along with the time taken
to do so. Then, the impact of the two probabilistic models (IID and Markov) used by
Presyn is examined by way of a partial ablation study. Finally, these trained models
are inspected to gather insights into the structure of the evaluation dataset.

5.8.1 Coverage

The primary evaluation criteria for Presyn against other synthesiseers is the number
of programs in the evaluation dataset it is able to synthesise. Figure 5.3 shows this
proportion for two scenarios: firstly, where the synthesisers are given per-problem
help as originally specified in their evaluation; secondly, where this help is not given
and a 1 hour timeout on synthesis is applied.

Figure 5.3: Proportion of the synthesis benchmark set synthesised by each implemen-
tation under favourable conditions (see section Section 5.5.3), and when restricted by
time limits and reduced help.
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Table 5.2: Proportion of each group of synthesis benchmarks synthesised by each
synthesiser under favourable conditions (see Section 5.5.3)

Group Annote Makespeare Simpl �2
SketchAdapt Presyn

makespeare 0.20 0.64 0.09 0.45 0.00 0.55
simpl-int 0.00 0.80 0.73 0.20 0.00 0.93

simpl-array 0.58 0.75 0.58 0.58 0.08 0.92
�2 0.43 1.00 0.38 0.75 0.00 1.00

SketchAdapt 0.20 0.50 0.00 0.10 0.10 0.50
Mean 0.26 0.73 0.39 0.39 0.04 0.79

string 0.00 0.23 0.13 0.56 0.00 0.75
mathfu 1.00 0.60 0.67 0.47 0.13 1.00

blas 0.75 0.00 0.00 0.00 0.00 1.00
dsp 0.90 0.26 0.40 0.38 0.00 1.00

Mean 0.92 0.33 0.38 0.48 0.04 0.93

Mean 0.53 0.54 0.39 0.43 0.04 0.86

In Table 5.2, the synthesis results for each implementation under favourable condi-
tions are broken down by their original source (synthesis benchmarks and real-world
libraries. Presyn is able to successfully synthesise more functions across the set of syn-
thesis benchmarks than each of the other implementations, even when they are given
appropriate assistance and unlimited execution time: 89% of the functions evaluated,
while the next-best performing (Makespeare) synthesises only 65%. On real-world
code, Presyn synthesises 93% vs. 63% for Annote.

Interestingly, it is not the case that each synthesiser performs best on its own
benchmarks or that each set of benchmarks is best synthesised with the corresponding
implementation; this is likely due to the differences in setup between the experiments
in this chapter and the original work. Nonetheless, it indicates that synthesis is by
nature a fragile problem to evaluate experimentally.

5.8.1.1 Synthesiser Help

Makespeare required a large number of input-output examples to generalise correctly.
Its results were influenced less by the help (passing specific information such as ar-
ray lengths as input register values) provided, as they were by the time required by
synthesis. Relative to the other implementations, Makespeare required a long time to
produce successful syntheses (over 12 hours in some cases). For computationally in-
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tensive genetic techniques like Makespeare, the time budget available to freely explore
the search space is in some sense an additional source of help.

For Simpl, the most valuable source of additional help was the sketch provided to
demonstrate the correct program structure. While Simpl is able to explore the search
space without this help, not providing it both slows synthesis and reduces the number
of successfully synthesised examples.

Broadly, �2 is successful without substantial additional help being provided. For a
small number of problems, explicitly providing an input-output example encoding a
relevant recursive base case produced a correct synthesiswhere one had not previously
been achievable.

SketchAdapt suffered from poor performance on general-purpose problems; it
was only successful on trivial examples outside its own evaluation domain. In fact, the
experimental procedure found that it was unable to reproduce its own results once the
specific input values were changed. As it has the least mature implementation, this is
perhaps not unexpected. Additionally, SketchAdapt is in some sense further out of
its comfort zone than any of the other synthesisers evaluated here. It is intended to
perform well on restricted problem domains where the generalisations required are
much smaller, and the dataset covers a more significant fraction of the program space.
Examples of this can be seen within the original paper, where Nye et al. [84] are able
to demonstrate high accuracy on a number of different subdomains.

When synthesis time is limited or less help is provided for a synthesis problem,
Presyn exhibits an even greater advantage over other implementations. Both �2 and
Simpl exhibit degraded synthesis when assistance is not given (not shown in Figure 5.3
is that successful syntheses took up to 300× longer to discover in these cases). Make-
speare’s use of a genetic algorithm means that it relies on being able to spend a long
time searching a space of programs, and struggles when a timeout is imposed.

5.8.2 Synthesis Time and Validity

The amount of time spent in synthesis by each scheme varied considerably. Presyn,
�2 and Simpl all showed mean synthesis times (for successful cases) of less than 120 s.
SketchAdapt required longer, with a mean synthesis time of 914 s. Because of its
reliance on genetic search, Makespeare used amean of 4522 s per synthesised program,
with some taking up to 3× this long before being timed out.

The size of programs generated by Presyn varied from 40 to 110 lines of LLVM IR.
Without a formal specification, synthesised programs can only be tested for observa-
tional equivalence (i.e. they cannot be formally verified as correct). For every Presyn
synthesised program, further random and boundary value inputs (outside the initial
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Table 5.3: Jaccard coefficient for predictions of the initial fragment set F0 across each
set of synthesis problems.

Group Acc(F0)

makespeare 0.77
simpl-int 0.85

simpl-array 0.87
�2 0.72

SketchAdapt 0.72

string 0.72
mathfu 0.90

blas 0.95
dsp 0.77

Mean 0.81

set used for synthesis) were generated to determine if outputs matched those from
the target black-box function. In all cases the synthesised program was found to be
behaviourally equivalent.

5.8.3 Impact of Probabilistic Models

The two probabilistic models used by Presyn (IID and Markov) both serve to accelerate

the synthesis process by reducing the size of the relevant search space; if fewer candi-
date programs are considered, then a correct one can be identified more quickly. This
section evaluates how effective these models are at doing so.

First, the accuracy of the predictions made by IID is evaluated. While in theory
Presyn couldproceedwith synthesiswithoutfirst predictingF0, the size of the resulting
sketch space is so large as to be completely impractical. Because of this, IID’s accuracy
is measured directly against ground truth data for each synthesis problem to quantify
the extent to which it over- or under-approximates.

Then, the impact of Markov is evaluated using a small ablation experiment; the
number of candidates evaluated by Presyn before a successful solution is measured
both with and without Markov (i.e. applying a uniformly distributed model after IID’s
predictions).
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Figure 5.4: Functions synthesised vs. candidates evaluated using the IID and Markov
models of synthesis.

5.8.3.1 IID

Because IID can both over- and under-approximate its prediction of F0 (i.e. it can
incorrectly include an irrelevant fragment, or it can omit a relevant one). The most
commonly used similarity metric for scenarios such as this is the Jaccard coefficient
[152], which measures the overlap between two sets. For two sets � and �, the Jaccard
coefficient is defined as:

�(�,�) , |�∩�||�∪�| (5.11)

For any two such sets, 0 ≤ �(�,�) ≤ 1. To evaluate IID, the ground truth set of
fragments Ft must be known; this is the case for the evaluation dataset, as each example
has already been annotated with a set of fragments in order to train IID and Markov.
A particular predicted set of fragments F0 can therefore be assigned an accuracy score:

Acc(F0) ,
|F0∩Ft |
|F0∪Ft |

(5.12)

Table 5.3 shows the prediction accuracy achieved by IID on each set of benchmark
problems. It doesnot significantly over- orunderapproximate; across the entiredataset,
an accuracy of 81% represents approximately one prediction error per example.

5.8.3.2 Markov

To evaluate the impact of Markov on Presyn’s synthesis, its performance before and
after training Markov was evaluated. For both experiments, the same synthesis pro-
cedure was followed, but with a uniformly distributed Markov chain substituted for
the trained Markov model in the former case. The distribution of successful syntheses



5.8. Results 113

Figure 5.5: Relative frequency of each fragment type in each group of benchmarks.

against candidate programs evaluated was recorded in each case, as a measure of how
quickly successful results can be accumulated.

The results of this experiment are shown in Figure 5.4. It is clear thatMarkov signif-
icantly accelerates the synthesis process; it is able to synthesise 60% of the programs in
the dataset using fewer than half as many candidate programs as the uniform model.
The distribution of successes is long-tailed, and the final ∼ 20% of the dataset Presyn
can synthesise is not shown in this figure. In the long tail of programs, the difference
between the two models is smaller as the complexity of synthesis is dominated by the
search for long sequences of instructions.

5.8.4 Insights into Program Structure

As well as outperforming competing implementations on a wide range of synthe-
sis problems, Presyn provides interesting statistical insights into the structure of the
programs it synthesises through its use of probabilistic models. In this section, these
models (IID andMarkov) are updated after synthesis with the newly observed structure
of each solution. The updated models are not used for synthesis; the results shown in
previous sections still reflect the original 20% test-train split of the dataset.

In Figure 5.6, three different insights into the structure of synthesised programs
are shown. First, in Figure 5.5, the relative frequency of each type of fragment across
benchmark groups is given. Linear blocks of code are common across all the bench-
marks, as every program is required some kind of computation. In terms of control
flow, the easiest synthesis benchmark suites (simpl-int, simpl-array, mathfu and�2) are
those with largely homogeneous control flow across their benchmarks, while the more
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(a) IID distribution of each fragment type,
organised by unique type signatures. From
left to right, each column represents a
type signature. For example, the left-
most column shows the distribution of frag-
ments across functions with the signature
int (int, int*) .

(b)Markovmodel transition probabilities for
each pair of fragment types; each column’s
entry is the relative likelihood of that frag-
ment following the fragment identified by
the row’s label.

Figure 5.6: Insights into the underlying distributions yielded by Presyn’s training
process.

challenging ones (makespeare, string, SketchAdapt) have far more variation. These
results suggest that at least an approximate notion of difficulty for a set of synthesis
benchmarks is the heterogeneity in code structure required to solve the problems in
that set. Other intuitive structure that can be observed is the ubiquity of nested loops
in the BLAS matrix-vector problems.

Figure 5.6a shows the distribution of fragments that appear in solutions with each
of the 12 most common type signatures in the dataset (from left to right, each column
represents a type signature; e.g. int (int, int*) in the leftmost column). From
this, it is apparent that the most common type signatures dominate the synthesis
dataset, with a long tail of less common ones. Part of the reason for this is that
signatures arenot equal over reordering; if parameters aregiven in adifferent order (e.g.
int, float* rather than float*, int ), then it is probable that different semantics
are intended. Additionally, it is clear that the use of fragments by each signature is
consistent (even more so for the most common signatures). This consistency explains
the initial success of IID and Markov in synthesising the first, simplest part of the
dataset seen in Figure 5.4.
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Finally, Figure 5.6b shows the transition probabilities extracted from the fully-
trained version of the Markov model. The consistently darker column in the center
indicates that compositions are most likely to follow most fragments with a linear
region of code. Under the composition semantics given in Section 3.5, this typically
represents a control-flow structure being instantiated with a nested computation. This
means that Markov is self-limiting, and favours generating smaller programs: most
fragments are most likely to be followed by a linear fragment, which is itself likely to
end the synthesis.

5.9 Related Work

This chapter deals with the acceleration of search-based program synthesis through
the application of learned probabilistic models. Similar techniques have been used
to improve search through syntactic models [67]; where that work uses a generic
formulation of synthesis problems, Presyn develops the domain-specific ideas from
Annote to reduce thequantity of trainingdata required. Byworkingwithin aparticular
synthesis domain (functions similar to those appearing in common libraries), simpler
models can perform favourably against more complex ones. Recent work in neural
program synthesis focuses on training larger models with multiple modalities in order
to capture this domain specialisation [87, 153, 154].

As well as synthesis, this chapter deals with the systematic cross-evaluation of
synthesisers; a well-known problem in the program synthesis literature [46]. While
existing work has attempted to assemble aggregate synthesis benchmark suites [47],
the evaluation in this chapter considers more varied sources (library functions as well
as existing benchmarks), and presents a more detailed analysis of how the results

produced by different synthesisers can be compared to one another.

5.10 Conclusion

This chapter has addressed the novel problem of black box program synthesis, where
problem specifications are based on the observed behaviour of an existing component
(rather than a human description). The synthesiser developed to attack this problem,
Presyn, achieves better performance across a wide range of synthesis benchmarks
(composed of both new and existing problems) than five other competing synthesisers,
including Annote as introduced in Chapter 4.

Evaluating Presyn required the collection of a large, state-of-the-art set of synthesis
benchmarks that partially subsumes those used to evaluate the competing synthesis-
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ers. Additionally, a carefully considered comparison methodology was developed to
allow for a fair evaluation across different target languages and styles of synthesis. As
well as strong synthesis performance, the simple probabilistic models used to imple-
ment Presyn provide interesting insights into the structure and difficulty of synthesis
problems.



Chapter 6

From Synthesis to API Migration1

Chapter 4 presents the design of a program synthesiser (Annote); it aims to synthesise
programs that are behaviourally equivalent to functions from an existing software
library. By doing so, regions of application code that exhibit the same behaviour can
be searched for and replaced with a better implementation. The evaluation of Annote
in Chapter 4, and the results it achieves are limited by its requirement for manual
annotation of each new synthesis task.

While Chapter 5 improves the synthesis aspect of the workflow in Chapter 4, this
chapter addresses an orthogonal question: how successful is the code refactoring com-
ponent? To do so, the approach originally prototyped in Chapter 4 is re-examined in
the context of API migration, a well-known problem in software engineering research.

Beginning with the work done in Chapter 5, an expanded dataset of synthesis
tasks derived from software libraries is collected. This dataset builds on the one
used to evaluate Presyn by deliberately introducing potential redundancies between
libraries (and therefore opportunities for APImigration). Presyn is able to successfully
generalise to the unseen functions in this expanded dataset using the same training
and synthesis procedures defined in Chapter 5.

A novel migration workflow (M3) that uses inlining of synthesised programs to
identify partial matches of library behaviour and application code is defined. By
doing so, a large number of potential API migrations in real-world applications can be
correctly identified and reported.

6.1 API Migration

Libraries are a fundamental feature of software development. They allow the shar-
ing of common code, separation of concerns and a reduction in overall development

1This chapter is based on published research in Collie et al. [4].
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time. However, libraries are not static: they continually evolve to provide increased
functionality, security and performance. Unfortunately, upgrading software to match
library evolution is a significant engineering challenge for large code bases.

Given the wide-scale nature of the problem, there is much prior work in the area
under various headings (e.g. library upgrade, API evolution or library migration).
Work in these areas aims to answer the same question: when (and how) can a program
using API - be transformed to one that uses API ., while preserving its behaviour?
This is a difficult problem even when - and . have compatible or similar interfaces.
It becomes more challenging if their behaviours do not match, and requires a complex
understanding of the contextual code at library call sites.

There are several approaches to this migration problem: if examples exist of pre-
vious successful migrations, then these examples can be used to derive mapping rules
[106]. Doing so requires that a full history of the application’s source code is available,
annotated with the libraries in use at each commit. Neural models have been used
successfully to predict properties of programs based on learned vector-space embed-
dings [105]. However, these approaches require large training sets and are imprecise
with respect to program semantics. A more precise (but less automatic) approach is to
use expert knowledge to encode known migration patterns [155, 156].

All these prior approaches require some knowledge of the API. This chapter tackles
the challenging task of API migration without any prior knowledge of the source or
target libraries. Here, no access to the library’s source code is available, nor to a corpus
of example usages of the library. While this scenario may seem draconian, it is often
the case in practice [157].

There are several reasons why access to a library’s source codemay not be available
in practice. For licensing or intellectual property reasons, libraries may be deliberately
closed-source [158] (i.e. to protect proprietary implementation details). Even setting
aside licensing issues, it is often the case that libraries are distributed through package
management software as binaries for convenience [159]. It is even possible that there
is no underlying source code for a library if it represents an interface to specialised
hardware or a network service [160]. This chapter proposes a novel approach which
automatically learns pattern-based semantic migrations, but without up-front expert
knowledge.

6.1.1 M
3
: Model, Match and Migrate

The key to the approach in this chapter shares a common heritage with the ideas first
elaborated in Chapter 4: deriving a model for library functions that is itself executable
code, then using that model to drive refactorings of user code.
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Figure 6.1: A summary of the M3 workflow. Models for library functions are synthe-
sised. Source functions are inlined while synthesised target functions are generalised
into constraint descriptions, which are then used to search compiled user code for po-
tential migrations. From left to right, the three coloured regions highlight the different
phases of M3: Model in green , Match in red , and Migrate in blue .

Deriving migrations from the behaviour of code, rather than from external infor-
mation (e.g. commit logs or languagemodels) is called semantics-basedmigration in this
chapter. Given a specification for a library function (type signature, function name,
library binary containing its implementation), M3 attempts to automatically Model its
behaviour using program synthesis and checks correctness with respect to automat-
ically generated input-output examples. It inlines the learned program models, then
uses compiler-based constraint analysis toMatch regions of application codewith com-
patible libraries. Finally, these regions can be Migrated by replacing application code
with library calls.

A useful feature of this approach is that as well as library migration, it allows the
refactoring of library-free user code to use libraries. This is because the synthesised
models are themselves code, and are inlined and analysed together with application
code. Complex refactorings that integrate contextual code around an API call are
enabled by this approach.

This approach, while having the benefit of not requiring library vendors to release
their source code, relies on the ability to synthesise programs in a reasonable time. To
do so, it builds on the probabilistic, sketch-based program synthesiser implemented
in Chapter 5 (Presyn). The full approach is evaluated across 7 libraries, synthesising
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94 functions, and matching them to over 7,000 old library calls across 10 applications
with up to 1MLoC. More than 2,000 of these calls could be successfully migrated to
another library.

6.2 Overview

This section describes, at a high level, the M3 workflow. M3 is a synthesis-based
approach to API migration that allows for semantics-based migrations to be discov-
ered, taking into account the contextual behaviour of application code as well as the
functionality of the libraries in question.

6.2.1 M
3
Workflow

Figure 6.1 shows an overview of the data flow through the M3 workflow. Each of the
three distinct phases (Model, Match andMigrate) is highlighted, as is the contribution
of a traditional compiler.

Before the M3 workflow begins, an unmodified compiler is used to compile ap-
plication source code to intermediate representation (as implemented here, LLVM IR
[8]). Doing so allows the subsequent phases of M3 to programmatically manipulate
the compiled code before it is finally compiled. In Figure 6.1, regions that are not
highlighted are implemented using the unmodified compiler.

The first step (model, green highlight in Figure 6.1) is to synthesise executable
models for library functions. While the implementation described in this chapter uses
Presyn, the probabilistic sketch-based synthesiser described in Chapter 5, any similar
approach could be used in practice. Regardless of the methodology used to obtain
them, the key output of theModel step is to obtain executable descriptions of functions
from two distinct libraries. In this section, these libraries are referred to as the source

and target libraries; the API migration task addressed byM3 is to replace calls to source
library functions with calls to equivalent target library functions. For brevity, the
source and target libraries may equivalently be labelled as L and L’.

The second phase, (match, red highlight ) uses the synthesised descriptions of
source and target library functions in different ways. First, any calls to synthesised
source library functions are inlined into the application source code at each call site.
Doing so produces code that is library-free as far as possible. That is, it appears as if
the entire application, including library functionality, had been implemented by hand.
The behaviour of the library function and the context in which it appears are unified;
migrations that require splitting, merging or moving functionality can be discovered
and performed.
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Next, the synthesised code for target library functions is generalised to a constraint-
based description language (the process by which this is achieved is due to Philip
Ginsbach’s contributions to Collie et al. [2]; see Section 3.3 for an overview and full
attribution). This description language permits the use of a constraint solver to effi-
ciently search for regions of application code thatmatch the structure of the synthesised
library function.

Finally, after running the CAnDL search process (Section 3.3), a set of matches
are identified. These matches show where application source code exhibits structure
compatiblewith synthesised target library functions. Thefinal stage of theM3 workflow
(migrate, blue highlight ) is to identify which of thesematches can in fact bemigrated
correctly to the target library.

To do so, basic integration testing using random examples is carried out on the new
(post-migration) code. This helps to eliminate false positive matches. At this stage,
the migration can be performed automatically, although in practice the user would be
asked to confirm the migration (as is usual with API migration tools). Full-application
integration testing can also be carried out to verify the correctness of the implemented
migrations.

6.2.2 Example

To demonstrate the types of migration that M3 offers, it is helpful to consider a
running example derived from real application code. Specifically, this example is a set
of representative fragments taken from the Common Weakness Enumeration (CWE)
database [161]. This database contains examples of programming patterns and API
misuses likely to result in safety or security issues in application code.

The example considered in this section relates to the handling of null-terminated
(C) strings in application code. For example, if the standard strncpy function is
used to copy a string, it is not guaranteed that the destination buffer will contain
a null terminator. This can lead to buffer over-reads, and so alternative functions
are often provided to perform a safer, terminated copy (for example, strlcpy on
BSD, StringCchCopy on Windows or other application-specific implementations).
In Figure 6.2, implementations of strncpy and strlcpy are shown together for
comparison; the explicit addition of a null terminator can be seen at line 8.

CWE-126 identifies a common pattern where strncpy is used in combination
with a manually added null terminator, and suggests that such instances should be
replaced with calls to the “safer” string copying routines. This is an instance of a
useful, real-world API migration task.

Figure 6.3 summarises the three code patterns identified in CWE-126 that are
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1 char *

2 strncpy(char * dst, const char * src, size_t maxlen) {

3 const size_t srclen = strnlen(src, maxlen);

4 if (srclen < maxlen) {

5 memcpy(dst, src, srclen);

6 memset(dst+srclen, 0, maxlen - srclen);

7 } else {

8 memcpy(dst, src, maxlen);

9 }

10 return dst;

11 }

1 size_t

2 strlcpy(char * dst, const char * src, size_t maxlen) {

3 const size_t srclen = strlen(src);

4 if (srclen + 1 < maxlen) {

5 memcpy(dst, src, srclen + 1);

6 } else if (maxlen != 0) {

7 memcpy(dst, src, maxlen - 1);

8 dst[maxlen-1] = '\0';

9 }

10 return srclen;

11 }

Figure 6.2: Standard library implementations of strncpy and strncpy ; both are
taken from the source code of the Darwin XNU operating system kernel under the
terms of the Apple Public Source License Version 2.0.

https://opensource.apple.com/apsl/
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strncpy(fn_buf, argv[0], n);

fn_buf[n - 1] = '\0';

1 call + context

strlcpy(fn_buf, argv[0], n);

for(int i = 0; i < n; ++i) {

fn_buf[i] = argv[0][i];

}

fn_buf[n - 1] = '\0';

2 user code + context

strlcpy(fn_buf, argv[0], n);

strncpy(fn_buf, argv[0], n);

strncpy(pt_buf, argv[1], m);

// handle other buffers...

fn_buf[n - 1] = '\0';

pt_buf[m - 1] = '\0';

3 interleaved context

strlcpy(fn_buf, argv[0], n);

strlcpy(pt_buf, argv[1], m);

// handle other buffers...

Figure 6.3: Example of three contexts in which M3 is able to perform contextual API
migrations using only the behaviour of the source and target functions.

suggested as targets for refactoring. The first case 1 is the simplest. A call to strncpy
is made, and the destination buffer immediately has a null-terminator set. The relevant
CWE entry suggests that this code should be refactored to a single call to strlcpy .
Thismigration couldbeperformedusing tools such asRefaster [155], butwould require
an expert to encode it manually.

The second case 2 highlights the utility of M3: after performing inlining, the code
that explicitly calls strncpy is no different to code that performs an explicit loop.
Both of these patterns exist in real code, and can be migrated equivalently using M3.
Becausemany different syntaxes can represent the same underlying semantics, writing
source-code based tools that discover loops in this way is a hard problem [12]; M3’s
compiler integration and IR-level search allows it to handle loops and other control
flow statements homogeneously.
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Table 6.1: Corpora used to evaluate M3.

(a) Application source code for which migrations were tested.

Software Description LoC

ffmpeg Media processing 1,061,655
texinfo Typesetting 76,755
xrdp Remote access protocol 75,921
coreutils Utilities 66,355
gems Graphics helpers 46,619
darknet Deep learning 21,299
caffepresso Deep learning 14,602
nanvix Operating system 11,226
etr Game 2,399
androidfs Filesystem 1,840

(b) Library APIs for which synthesised implementations were learned and used to drive mi-
gration.

Library Description

string.h C standard library string handling
StrSafe.h Safety-focused C string handling
glm Graphics functions
mathfu Mathematical functions
BLAS Linear algebra
Ti DSP DSP Kernels
ARM DSP DSP Kernels

Finally, the third case 3 shows a complex migration where calls to strncpy are
interleavedwith their respective terminations. By operating at the IR level,M3 is able to
identify that no dependencies exist between the calls, and so the migration is possible.
In general, source code-based tools, even with expert knowledge, are less able to make
this determination.

Unifying these different forms of migration without requiring up-front expert
knowledge or library source code is the key advantage of M3’s approach to semantic
migrations.
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6.3 Implementation

This section summarises the implementation of the M3 workflow, including the inputs
used by each of its three phases (Model, Match and Migrate). Inputs and outputs
from different stages of the process are distinguished; M3 is run for each new library of
interest, aswell as for each application targeted for APImigrations. Becausemuch ofM3

comprises a composition of other tools, places where new components are contributed
are highlighted.

6.3.1 Model

To synthesise executable models of library functions, Model uses Presyn as imple-
mented previously in Chapter 5. Because the dataset of library functions used to train
Presyn in Section 5.6 already contains library functions relevant to the migration task
attempted by M3, the same training data was used to implement Model (i.e. a separate
training dataset specifically for Model was not collected).

The Model phase is only run during the per-library phase of M3. Synthesis using
Presyn, while practical, is expensive relative to compilation and searching for matches
to CAnDL constraints; it is therefore necessary to cache the outputs of synthesis and
constraint generalisation.

Model consumes the following inputs for each fresh library to whichM3 is applied:

• An instance of Presyn, pre-trained on an appropriate, relevant dataset following
the specification in Section 5.6.

• A type signature for each function in the library that should be modelled (i.e.
those for which potential migrations would be useful).

• C foreign function interface (FFI) compatible callable interfaces for each library
function with a supplied type signature.

From these, it produces several (= ≥ 2, as multiple programs are required to gener-
alise constraint descriptions as described in Section 3.3) synthesised implementations
for a subset of the supplied library functions (i.e. those that can be successfully syn-
thesised). Multiple reported instances are required to facilitate later stages of the
workflow.

6.3.2 Match

The Match phase is concerned with both the per-library and per-application stages of
M3. At the per-library stage, it receives as input the multiple instances of synthesised
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library functions generated byModel. From these, it uses a version of the graph-based
constraint generalisation described in Section 3.3 to produce CAnDL constraints for
the synthesised library function.

Several new heuristic post-processing steps are applied by Match to the applica-
tion code and the generated constraints to improve their accuracy. These steps were
specified through a process of manual experimentation, and do not make changes to
the functionality of either the code or the constraints. Rather, they act to normalise the
two representations and reduce artifacts from specific compilation steps:

• The application code is compiled initially with a set of LLVM optimiser flags that
match (as closely as possible) the shared idioms created by fragment compilation
routines. For example, the mem2reg pass is run (among other optimisations) be-
cause fragments do not generate pessimalmemory-spilling codewhen compiled.
This normalisation does not rely on the specific semantics of any one fragment,
but does require that they collectively generate “intuitive” LLVM IR.

• For each constraint generated, a correspondinggraph is extracted (treating atomic
constraints as nodes, and references as edges). Then, the largest connected
component of this graph is extracted and returned as the “true” component;
doing so forces locality in the constraint search. CAnDL allows for matches to
cover disconnected (potentially distant) regions of code, but library functions as
synthesised are very unlikely to do so.

• Somegeneratedpatterns are lifted to equivalent,more general ones. For example,
a pattern matching add i32 %a, %b would be lifted (by commutativity) to one
matching add i32 %b, %a as well.

After these normalisations are applied, and the CAnDL solver has been run on
the application code, Match produces a set of results. Each result encodes the satis-
fying values for a particular constraint (i.e. a mapping from variable identifiers in the
generated constraint to concrete LLVM IR values in the application).

6.3.3 Migrate

The final phase, Migrate, is run only at the per-application stage of applying M3. It
takes as input a match result produced by the previous stage (a constraint variable to
IR value mapping), and attempts to replace the matched values with a library call. To
do so, several checks are necessary:

• The constraints generated must form a connected component on the constraint
graph; the matched region is validated to ensure that this is indeed the case on
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int app(int x, int y) {

if (x > y)

return x + y;

else

return x * y;

}

Application Source

define i32 @app(i32 %0, i32 %1) {

%3 = icmp sgt i32 %0, %1

br i1 %3, label %4, label %6

4:

%5 = add i32 %0, %1

br label %8

6:

%7 = mul i32 %0, %1

br label %8

8:

%.0 = phi i32 [%5,%4], [%7,%6]

ret i32 %.0

}

Application IR

int lib(int a, int b) {

return a + b;

}

Library

{

a => i32 %0,

b => i32 %1,

return => %5 = add i32 %0, %1

}

Match

define i32 @app(i32 %0, i32 %1) {

%3 = icmp sgt i32 %0, %1

br i1 %3, label %4, label %6

4:

%m.5 = call i32 @lib(%0, %1)

br label %8

6:

%7 = mul i32 %0, %1

br label %8

8:

%.0 = phi i32 [%m.5,%4], [%7,%6]

ret i32 %.0

}

Migration Result

Synthesise

Generalise

Match

Compile

Replace

Figure 6.4: Demonstration of how Migrate substitutes calls to library functions for
matched IR values in application code.
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the application IR.

• There can be no dependencies carried between values that were matched and
those that were not; if this is the case, then the application is necessarily perform-
ing additional computation not modelled by the library function. In some cases,
migrating to the new library function would be valid but result in redundant
computations being performed.

If all these checks are successful, the values mapped by Match to the library func-
tion’s arguments and return value are identified. Then, the migration can be performed.
An example of this is shown in Figure 6.4; first, a new call instruction is inserted after
the instruction matched to the library return ( %m.5 in the figure). The call takes as
arguments the appropriate values from the match result ( a and b in the Match Re-
sult box). Then, all references to the matched instruction (i.e. %5 ) are replaced with
references to the new call. Finally, the standard LLVM dead code elimination pass is
used to remove the previously matched application code.

The migrated application can then be tested. When the enclosing function for a
migration is compatible with the behavioural equivalence checking mechanisms used
byM3 during synthesis, an integration test can be applied to the entire function. If this
is not the case, the user is responsible for validating the migration; this responsibility
is shared with the vast majority of API migration tools and is not a significant burden
on the usability of M3.

6.4 Experimental Design

This section describes an experimental methodology by which the M3 workflow can
be evaluated. First, the ability of the synthesis component used (in this case, Presyn)
to generalise to new library functions is evaluated. Then, the correctness of the syn-
thesised programs is examined; observational equivalence is a useful definition in
“pure” synthesis contexts, but must be more closely examined when carrying out API
migrations. Finally, the respective accuracies of the Match and Migrate phases must
be measured: how many instances of target library functions can be discovered in
application source code, and how many of these can be successfully migrated.

These evaluation criteria are broken down into four questions as follows:

Feasibility and effectiveness of the Model phase: CanPresyn’s probabilistic program
synthesis be used effectively to learn the behaviour of black-box library functions?

Correctness of synthesised programs: Do the programs synthesised by Presyn be-
have the same as the target program over a particular set of inputs (that is, are
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they observationally equivalent)?

Presyn uses randomly generated inputs to verify this correctness in practice. To
assess the adequacy of these random inputs (in terms of how well they exercise
different application behaviours in practice), the branch coverage achieved across
the evaluation dataset is measured.

Accuracy of Match phase: Given synthesised implementations for library functions,
can compatible instances in application code be accurately discovered? In this
research question, the ability of the Match phase to accurately discover inlined
implementations of the same synthesised library functions in application code is
measured.

Accuracy of Migrate phase: Given instances of user code that match the constraints
generated from a library function, can APImigrations be correctly implemented?
This research question investigates ability and accuracy of the Migrate phase in
matching and migrating implementations in application code to different library
functions.

The remainder of this section first describes the collation of an evaluation dataset
for synthesis and API migration in practice, then details the experimental procedure
by which each of the above research questions can be answered.

6.4.1 Evaluation Corpora

To fairly evaluate M3, two separate datasets are required. First, a set of libraries (and
therefore library functions) is required. Because these functionswill be used to identify
potential API migrations, there should be some redundancy across libraries; that is, if
two libraries both implement function �, then both copies should be retained in the
dataset. This contrasts with the approach taken to evaluate Presyn in Chapter 5, where
the aim was to measure the number of orthogonal, unique functions synthesisable by
each implementation. As well as directly equivalent functions, the libraries selected
should exhibit instances of contextual API migrations that are not direct replacements.

Once these libraries are selected, the second required dataset is a set of applications
against which the potential for API migrations can be evaluated. These applications
should make calls to some of the libraries selected previously, and should additionally
demonstrate potential contextual migrations.
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6.4.1.1 Libraries

To evaluate M3, 7 distinct libraries were selected as targets for migration. These relate,
broadly, to two problem domains (so that the number of potentially demonstrable
migrations canbemaximised): stringprocessing andmathematical operations. Similar
problem domains are commonly targeted for migration by other related work in API
migration, though often with different tooling and source language contexts [CITE].
Additionally, integrating with the tools used in M3’s implementation (i.e. Presyn,
CAnDL and LLVM IR) meant that the libraries selected were limited to those with
APIs compatible with the C foreign function interface (FFI). The libraries selected
were:

String Processing The starting point for selecting string processing libraries was the C
standard library implementation of <string.h> . As identified in Section 6.2.2,
the standard functions available for manipulating C strings are easily misused,
with such usage errors potentially leading to critical security issues.

However, usage of standard C functions is endemic, even to C programs written
newly today. Migrating potentially unsafe usages towidely-available, less readily
misused libraries is therefore a valuableAPImigration task. To evaluate howwell
M3 is able to carry this task out, the StrSafe library was identified as a candidate
for replacement [162].

There are many implementations that implement essentially the same set of
improved string manipulations as StrSafe; repeating the evaluation on these
libraries would not provide any new information, and so StrSafe was selected as
the sole candidate for migration.

Mathematical There exists a far broader range of implementations within the scope of
mathematical libraries; many general-purpose libraries partially overlap in terms
of their supported problem domain. To evaluate M3’s ability to identify these
partial overlaps, 5 such libraries were identified. These were the GLM support
library for graphical applications, Mathfu (a general-purpose library), a subset of
theBLAS standard interface, and twoplatform-specific signal processing libraries
distributed by ARM and Ti respectively.

Discovering migrations between these libraries is likely to provide useful insight
into cross-platform migrations, as well as those related to performance (as in
Chapter 4).

A more detailed summary of the 7 libraries selected, and their respective function-
ality is listed in Table 6.1b. Similarly to the evaluation of Presyn in Section 5.7, a shared
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library interface and collection of type signatures was prepared as the synthesiser in-
put; doing so requires no knowledge of a library function’s interface than its signature
and the ability to make calls to it.

6.4.1.2 Applications

To evaluate the Match and Migrate components of M3, 9 widely-used, real-world
applications were identified. These applications target different problem domains and
are unrelated to each other. A summary of each of the applications selected is given
in Table 6.1a.

These applications were selected bymanually searching GitHub and similar online
repositories2 for code that matched the following criteria:

• The most important criterion for selection was a build system that permitted
easy interposition of the M3 compiler toolchain. As implemented in this chapter,
this requirement ruled out applications not written in C or C++, although with
some additional engineering work any language with an LLVM frontend could
be integrated.

• When selecting applications, large codebases in active real-world user were pri-
oritised. Projects under active development, or those for which significant dis-
tribution and usage could be identified were preferred.

• Additionally, applications were selected so as to maximise the diversity of imple-
mentation and target domain in the dataset. Duplicating domain-specific idioms
or paradigms within the dataset is less likely to provide useful insights into the
abilities of M3.

• No pre-selection of applications based on knowledge of their source code was
performed; no familiarity with any of the 9 applications was taken advantage of
when constructing the dataset.

6.5 Results

This section describes the results M3 was able to achieve with respect to the 4 re-
search questions posed in Section 6.4. Presyn is able to generalise from the results
in Chapter 5 to new, unseen libraries. The programs it synthesises are shown to be
observationally equivalent to the reference implementations, and the use of randomly
generated input-output examples is validated by testing branch coverage. The Match

2Using https://searchcode.com/

https://searchcode.com/
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Figure 6.5: Proportion of each library’s API that Presyn was able to successfully
synthesise, across all functions in the library as well as those with compatible type
signatures.

and Migrate phases of M3 are able to effectively and accurately discover instances of
generalised constraints in application code, that can subsequently be migrated to new
target libraries.

6.5.1 Feasibility and Effectiveness of Model

The first research question posed in Section 6.4 asks whether program synthesis is
a feasible approach to modelling the behaviour of a library. To do so, first Presyn’s
ability to generalise to the correct synthesis of new, unseen libraries beyond its original
evaluation and training set is evaluated. To do so, the proportion of functions in each
library API across the evaluation dataset is measured. For synthesis using Presyn to
be a useful component of M3 in practice, the time taken to successfully synthesise each
example must be practical.

6.5.1.1 Synthesis Coverage

Figure 6.5 shows the proportion of each library’s API that could be successfully syn-
thesised by Presyn. Across the entire evaluation dataset, it is able to synthesise nearly
40% of functions. This figure includes functions that cannot be loaded by Presyn
because their signatures are not compatible for engineering reasons (for example, if
they require pointers-to-pointers, or opaque data types). Discounting these functions,
Presyn is able to successfully synthesise approximately half of the loadable functions.
This represents a significant proportion of each library’s behaviour; even in the worst
performing case (BLAS), it is able to synthesise nearly 20% of all functions in the li-
brary. Performance on the BLAS library is limited by the high complexity ofmany of its
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constituent functions (e.g. solving systems of equations on packed matrix structures).

For each synthesis failure in the set of evaluation functions, the reference function
was examined by hand to determine why it could not be synthesised. In some cases
(e.g. strtok from string.h), the function demonstrated stateful behaviour. Mod-
elling this type of function is an open problem in program synthesis, with recent
work addressing limited contexts such as heap manipulation [163]. Presyn’s synthesis
methodology presumes that target functions are idempotent, and so does not support
stateful functions. Doing so is interesting future work. A small number of functions
(e.g. ssyr2k from blas) exhibit unusual control flow idioms not expressible using
Presyn’s set of fragments. However, the majority of failures are timeouts resulting
from long required sequences of instructions in target functions.

The coverage achieved by Presyn on libraries it was not originally trained and
evaluated on in Chapter 5 is consistent with the original training set. For example,
the StrSafe library does not implement improved versions of the simplest (i.e. least
error-prone) functions in the string.h library; across the set of similar functions, the
coverage achieved by Presyn is almost identical.3 A similar effect can be observed on
the signal processing libraries.

These results indicate that Presyn is able to synthesise a substantial proportion of
each library’s API. Taking into account the similarity of results between the new and
previously-evaluated libraries, as well as Presyn’s overall performance in Section 5.8, it
can be concluded that these results approach the best performance achievable by fully
black-box synthesisers at the time ofwriting. Achieving further coveragewould clearly
benefit the overall success and applicability of M3, but is likely to be a challenging goal
on the most complex of library functions under the black-box assumption. Relaxing
this assumption (i.e. providing additional information to a synthesiser beyond the
black-box model) is likely to provide a benefit to synthesis performance; one such set
of relaxations is examined in Chapter 7.

6.5.1.2 Difficulty

For the Model component of M3 (driven by Presyn) to be useful in practice, it must
be able to achieve successful syntheses in a practical time. The usage model of M3

suggests that this time can be greater than the time taken for compilation; synthesis of
each library function is a one-off task that is not repeated when a new application is
compiled. Nonetheless, the time taken should still be within the scope of a traditional

3This similarity is determined manually, and is intended as a qualitative demonstration of the similar
coverage achieved over both library APIs. For example, the functions strncpy and StringCchCopyN
functions are not directly equivalent, but are similar in their synthesis difficulty and intent.
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Figure 6.6: Distribution of synthesis times for each library API.

development workflow. To reflect this, a 4 hour timeout was used when synthesising
these functions.

Figure 6.6 shows the distribution of synthesis times across each of the libraries
evaluated. The distribution is long-tailed; themedian function across the entire dataset
can be synthesised in less than two minutes, with the most challenging ones taking
over three hours. These results indicate that the one-off Model phase of M3 can be
practically integrated with a typical development workflow.

6.5.2 Correctness of Synthesis

Synthesised functions are tested for correctness using observational equivalence; because
M3 is designed for black-box library interfaces, there is no better way to determine
correctness in practice. However, as the underlying code for each library function is
available as an artifact of the evaluation process, the adequacy of thismethod of testing
can be verified bymeasuring the branch coverage achieved on each synthesised function.

6.5.2.1 Observational Equivalence

Presyn tests synthesised solutions for correctness using randomly generated input
examples; these examples are collected from the reference implementation and used
to obtain true output values. Input examples are generated by uniformly sampling
values in the range of the input data types. To provide a stronger guarantee that the
reported solutions are in fact correct, two further strategies were employed for each
reported solution:

Manual Evaluation As well as testing using random IO examples, each synthesised
solution was examined by hand, using the author’s knowledge of the intended
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1 int tricky(int x, int y) {

2 if(x == 0x0BADC0DE) {

3 return y;

4 }

5 return x + y;

6 }

1 int wrong(int x, int y) {

2 // Incorrect when

3 // x == 0x0BADC0DE!

4 return x + y;

5 }

Figure 6.7: The right-hand side shows an example C function that demonstrates di-
vergent behaviour on a sparse subset of its input domain (in this case, a single “magic
number”). Detecting such cases is a challenging problem for black-box synthesismeth-
ods; shown on the left is the solution likely to be returned from a synthesiser using
observational equivalence to decide correctness.

behaviour of that example. Only one program was judged to be incorrect: the
memmove function from string.h. If the memory regions passed as arguments
aliased (i.e. they overlapped), the synthesised implementation would exhibit
incorrect behaviour. The testing methodology used by Presyn did not generate
aliased memory; generating a set of such inputs manually forced Presyn to
correctly synthesise memmove .

Boundary Value Testing Additionally, each synthesised candidate was tested using
boundary and outside range values for inputs. In every case, the synthesised
candidate conformed to the expected behaviour on these inputs.

6.5.3 Code Coverage

The primary limitation of observational equivalence over random inputs is when
the reference implementation exhibits divergent behaviour on a sparse subset of its
possible inputs. For example, the function on the left of Figure 6.7 returns x + y
for every x and y except when x == 0x0BADC0DE . If the set of generated input
examples does not include this special-cased value, then a synthesiser is likely to
report an incorrect solution (i.e. the code on the right hand side of Figure 6.7).

Resolving these cases is a somewhat philosophical issue in synthesis. For imple-
mentations where input examples are supplied by the user, the implicit assumption is
that they will cover the entire space of potential behaviours. However, in the black-box
scenario assumed in this chapter, the input examples are gathered from the reference
implementation by the synthesiser. If there are special cases that are not collected
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int x;

int y;

x > 0

return x; return y;

CFG

1 int f(int x, int y) {

2 if (x > 0) {

3 return x;

4 } else {

5 return y;

6 }

7 }
tr
ue

false

Figure 6.8: A C function shown with its control flow graph, illustrating the “distinct
branches” element of measuring branch coverage. For any single value of x passed
to the function, a branch coverage of 0.5 will be achieved (as the two branches are
mutually exclusive).

during this process, it is a failure of synthesis rather than a failure of specification.
To understand how effective Presyn is at capturing all possible behaviours of the

library functions it targets, the adequacy of the randomly generated inputs it uses is
measured. That is, how effective are random inputs in exercising behaviours of the
synthesised implementations. To do this, the branch coverage achieved on each solution
reported as successful is measured.

Branch coverage is a commonly usedmetric for code and test coverage experiments
as it is easy to measure and report, and is likely to be sufficiently precise for functions
without complex conditionals.4 Branch coverage is defined as the proportion of distinct
conditional branch results taken across a set of program executions. For example, the
CFG shown on the left-hand side of Figure 6.8 contains two conditional branch results
that could be taken. Each individual execution will result in a branch coverage of
exactly 0.5, but if multiple values of x are passed such that both branches are taken
on some executions, it is possible to achieve coverage of 1.

Figure 6.9 shows the branch coverage achieved across the full set of library functions
evaluated, as a function of the number of random input examples used. With as few as
10 distinct inputs, more than 98% of the branch conditions in the corpus of synthesised
programs are exercised. Typically, at most around 30 random inputs are needed to
provide 100% branch coverage for any synthesised candidate. The numerical libraries
evaluated most often contain loops as their primary control flow; branch coverage is

4In such cases, splitting of boolean subexpressions, or more stringent metrics such as path coverage
could be applied.
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Figure 6.9: Corpus branch coverage achieved using randomly generated inputs. Cov-
erage values are reported as the mean of three separate runs (using different randomly
generated inputs on each run). For the string.h and ti libraries, full coverage was
not achieved because of a check for overlapping memory in the memmove function (or
an analogue).

less difficult to achieve over looping code than over conditionals. These results provide
confidence that the synthesised candidates behave equivalently to the target program
with respect to inputs that exercise the complete control flow in the candidates.

6.5.3.1 Inside the Black Box

In many cases, the underlying source code for the libraries in the evaluation set was
available in some form, making it possible to directly compare synthesised programs
to the original code by “looking inside” the black box. These programs were compiled
to LLVM IR and used as input to the Match and Migrate phases as if they had in fact
been synthesised by Presyn. No meaningful divergence in results could be observed
by doing so; similar per-library branch coverage was achieved, and the compiled IR
for synthesised and handwritten implementations was almost identical in most cases.
No behavioural differences were observed.
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Table 6.2: The number of call sites where synthesised functions were inlined in each
application, along with the proportion of these that could be successfully rediscovered
using Match.

Application

Inlined Calls (L→L) User Code (C→L’)

#Instances Matched (%) #Instances

ffmpeg 4,976 100% 24
texinfo 586 100% 1
xrdp 686 100% 0
coreutils 623 100% 16
gems 46 100% 61
darknet 128 100% 13
caffepresso 189 100% 0
nanvix 0 - 16
etr 4 100% 45
androidfs 0 - 2

Total 7,238 178

6.5.4 Accuracy of Match

This section evaluates the success of Match. To do so, its “rediscovery” success rate on
synthesised library functions is examined, as well as its ability to discover user code
matching these functions. A common notation shared with Migrate is established to
describe these results.

6.5.4.1 Rediscovery

For the Match phase of M3 to be useful in practice, an important litmus test is whether
it is able to recover all inlined instances of a library function from the constraints
generated from that library function. If this is not the case, then information is lost
during the Match phase, and it may not be possible to reverse the inlining process to
recover the original application code.

To assess whether Match satisfies this property in practice, every successfully syn-
thesised function was inlined at each of its call sites across the set of evaluation ap-
plications. Then, the generated CAnDL constraints for that function were used to
search for matches in the application code; Table 6.2 shows the results of doing so (the
number of library call sites that were inlined, along with the proportion of these that
were rediscovered successfully). As shorthand, instances of inlined library code that
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1 void copy_cpu(int N, float *X, int INCX, float *Y, int INCY)

2 {

3 int i;

4 for(i = 0; i < N; ++i) Y[i*INCY] = X[i*INCX];

5 }

Figure 6.10: Re-implementation of the standard BLAS function SCOPY discovered in
the Darknet [123] machine learning framework.

could be matched against the same original function are written L→L (i.e. Library to
Library matches).

These results show that Match is able to successfully recover every instance of
inlined library calls in the original code. This is because the same, identical code is
inlined at each site, and because inlining does not change the structure of the code
from which the constraint description was generated.

6.5.4.2 Application Code

As well as being able to successfully identify inlined calls, Match is able to identify
locations in the application code where equivalent functionality to a library function is
implemented. For example, for portability the Darknet machine learning framework
re-implements some functions from the BLAS standard, one of which is shown in
Figure 6.10. M3 is able to match the body of this function against the previously
synthesised and generated constraints for SCOPY . This ability is not limited to “clean”
function body matches; Match is able to identify locations within larger contexts of
application code where similar matches occur.

This type of match is notated as C→L’ (i.e. user Code to new Library), and the
number of such instances discovered in each application is shown in Table 6.2. A
manual search for further instances not discovered by Match based on these results
was performed. A combination of several techniques was used to perform this search:
handwritten CAnDL constraints for significantly abstracted versions of each function
were used to guide an initial search, as well as textual similarity and heuristic explo-
ration of the code.

For example, where a re-implementation of one string-processing function was
discovered, a search for similar re-implementations that were not discovered byMatch
was performed. For a region to be classified as a re-implementation, it was required
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Table 6.3: Migration opportunities discovered in each application, broken down by the
category of the source context (source library calls L or user code C).

Application Migrations

Category

L→L’ C→L’ L+C→L’

ffmpeg 655 629 24 2
texinfo 431 413 1 17
xrdp 274 269 0 5
coreutils 649 633 16 0
gems 107 46 61 0
darknet 40 7 13 20
caffepresso 24 24 0 0
nanvix 16 0 16 0
etr 49 4 45 0
androidfs 2 0 2 0

Total 2,247 2,025 178 44

that on well-formed inputs (i.e. not accounting for “exceptional” control flow), the
region performs the same task as the original function.

No further instances of this kind were identified by this search, confirming with
reasonable certainty that there were no false negatives from Match (though no tech-
nique can verify this formally). The constraints generated by Match were specific
enough that none of the application code matches represented false positives.

Running the CAnDL solver takes additional time during compilation; approxi-
mately the same as compilation itself for each pattern to be searched for [12]. This time
is not a bottleneck when using M3 practically.

6.5.5 Accuracy of Migrate

Finally, to assess the usefulness of M3 as a migration tool, the number of matches that
can be translated to a different library (rather than the L→Lmatches where uses of the
original library are recovered) must be evaluated.

To do so, the number of cases where the generated constraints for each library
function matched application code that was not originally a call to that function was
counted. This quantifies the number of possible migrations enabled by M3. Table 6.3
gives the total number of migrations found in each application, as well as a breakdown
into three categories:
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• Replacement of a source function with a semantically identical target function
from a different library (L→L’).

• Identification and replacement of redundant application code that could be better
expressed as a target library function call (C→L’).

• Replacement of code that combines a source library call and handwritten code
with a target function (L+C→L’).

The most common migrations were L→L’, where two libraries implemented the
same function (for example, delimited string copying or a vector dot product). Some
functions did not produce migration opportunities, even though they could be inlined
and matched. memcpy is an example of this due to its ubiquity; applications like
ffmpeg and xrdp that frequently perform buffer copies show far fewer migrations than
inlined matches because no migrations were available for memcpy .

Note that the category C→L’ corresponds exactly to the number of matches to user
code (C→L’) quoted in Table 6.2. This is because any matching instance of a func-
tion in application code represents a migration opportunity; if original, handwritten
application code matches the generated constraints for a library function, there is by
definition an available migration.

These results demonstrate that M3 is able to successfully identify distinct classes
of migration (other tools are often limited to one of these classes only, and L+C→L’

migrations generally require expert knowledge to express). The migrations identified
are useful and would be difficult to identify with existing tools.

6.5.6 Threats to Validity

The results in this section show that M3 is able to identify and perform a large number
of useful migrations using real-world applications and libraries, in contexts not well
served by existing tools. The primary threats to internal validity are:

1. The fragment vocabulary used by Presyn and Model is a limiting factor; the
variety of programs that can be synthesised depends on this vocabulary. How-
ever, this is a limitation shared by all sketching program synthesisers, and can
be extended easily without changing the overall M3 approach.

2. The CAnDL constraint generation used by Match and Migrate is not formally
verified; it relies on testing with different library functions to check constraints
always match their source programs.

3. The correctness of synthesised implementations against their respective refer-
ence implementations is checked using randomly generated test inputs, with
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additional reassurance from branch coverage tests. Proving total correctness
is challenging even if the original reference program were available; doing so
amounts to program equivalence checking, an open research question for imper-
ative programs as considered in this thesis [164]. If the original reference is not
available, then observational equivalence represents the best possible correctness
specification.

The main threat to external validity lies in the subject libraries chosen and the
restriction to two problem domains: string processing and mathematical operations.
These domains have also been targeted by other migration tools and are therefore
used to facilitate comparison. Presyn and Model are not fundamentally restricted to
these domains Extending their vocabulary of fragments to include more expressive
computations will allow them to scale synthesis to more complex APIs and functions.

6.6 Related Work

The work in this chapter offers improvements over two common approaches to API
migration: automatic library-to-library migrations, and complex semantic rewriting
of application code.

Automated approaches to library migration often use large corpora of migration
examples, from which statistical inferences about the likely occurrence of further mi-
grations can be drawn. For example, pan [165] use textual similaritymetrics to identify
API calls that appear in similar application contexts. Recent work has aimed to de-
crease the degree of prior data required [166], but in the context targeted by M3, such
data may not exist at all.

More complex migrations often require expert users to encode their desired pat-
ternsmanually. For example, tools like ReFaster [155] andNoBrainer [156] (for Java and
C/C++ respectively), generate migration patterns from paired source code examples.
These patterns can be applied automatically, but require an expert user to encode the
pattern initially. Similarly, the initial work on the CAnDL language and migration en-
gine [12] (upon which M3 is built) can automatically discover migration opportunities
given a manually-encoded description of the relevant code or libraries. M3 uses pro-
gram synthesis to learn these descriptions, and provides a method for automatically
applying migrations. By doing so, it combines automated application with semantic
analysis without requiring large quantities of training data. Other tools that aim to
perform complex migrations (such as Meditor [167] or EdSynth [168]) either require
more information, or migrate at the syntactic level, thereby sacrificing precision.
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6.7 Conclusion

This chapter has proposed a novel API migration tool that enables complexmigrations
in real-world code. This tool, M3, uses the behaviour of library functions to synthesise
executable models, and discover migrations without expert knowledge, change logs,
or access to the library’s source code.

This approach was successfully applied to 7 large, widely-used libraries, success-
fully synthesising nearly 40% of their functions. From these, M3 was able to discover
over 7,000 matching instances in 10 well-known C/C++ applications, many of which
represented missed opportunities for library usage or optimisation. Using constraint-
based search for API migration allows for the semantics of the code in question to be
accounted for, rather than just the contexts in which they appear; this results in more
precise migrations.





Chapter 7

Grey-Box Information for

Synthesis1

In Chapters 5 and 6, a system for performing black-box oracle-guided program synthesis
was described and evaluated. By restricting the contextual information available to
guide synthesis, a minimal viable problem statement for the underlying synthesis task
could be obtained and analysed. However, Chapter 4 demonstrated that sources of
information beyond type signatures, when available, can provide effective priors on
the synthesis procedure. The aim of this chapter is to bridge the gap between these two
viewpoints: what information can be used in practice to improve black-box synthesis,
while retaining as much automation as possible?

The key observation made in this chapter is that the target synthesis oracles that
motivate the whole of this thesis are real components. Traditionally, oracle-guided
synthesis treats the oracles in question as fully abstract objects that produce input-
output examples when requested. However, in the context of this thesis, the oracles in
question are the actual library functions. When an input-output example is generated,
the library function is executed on that input.

This chapter presents a method for grey box program synthesis. Compared to
black-box synthesis, where the internal structure of the oracle is entirely concealed, a
grey box context is one where dynamic observations of component behaviour can be
made as the component is executed on each different input. These observations cannot
specify correctness as input-output examples can, but do restrict the space of possible
solutions to a given synthesis problem.

The design and implementation of Haze, a program synthesiser designed to in-
tegrate grey-box information is presented. This design is then evaluated on a sub-
stantially expanded set of synthesis benchmarks, showing improved performance and

1This chapter is based on published research in Collie and O’Boyle [6].
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scalability against Presyn, as well as against more specialised binary lifting tools.

7.1 Introduction

Existing automated software engineering techniques often rely on component spec-
ifications being made available; for example, to perform tasks such as migration be-
tween two APIs. Unfortunately, it is often the case in practice that these specifications
are unavailable. Frequently, components are often only available in a low-level form
[169, 170], or are implemented as proprietary libraries or specialised hardware [111].

This has led to a large body of work aimed at recovering high level code from
components, to allow them to be specified and used to drive software evolution. At the
heart of these approaches is the idea of lifting, where high-level semantic information
lost during the implementation of a component is recovered or reconstructed [171].

However, existing lifting schemes are often ill-suited to recovering real-world pro-
grams. Some are overly specific, limited to targeting just one application domain (e.g.
image processing [96] or finite string automata [111]). Others, aiming at greater gener-
ality, are tooweak, restricting the lifted programs to a few lines of loop-free code [66, 84]
or Turing-incomplete DSLs [79]. Still others push the problem to the developer, either
requiring external access to the binary [100]; a full specification and a oracle that can
provide counterexamples [51, 54]; or relying on user-provided annotations to help the
recovery [2].

Ideally, a more general lifting scheme would be available, that is able to automati-
cally recover complex real-world specifications (programs) fromcomponents. It should
require minimal external specification, human assistance or static binary information.

This chapter presents a new approach to lifting an unknown component using grey-
box program synthesis. Unlike other synthesis approaches, which construct a program
solely based on a static specification [172, 173], it exploits, wherever possible, dynamic
observations of component behaviour. In particular, it is able to use the execution time,
memory traces and performance counters of a component to guide the synthesis of an
equivalent program. By doing so, more complex components can be lifted and used
to drive software evolution.

The remainder of this chapter is structured as follows. First, in Section 7.2, an
overview of the problem scenario and proposed solution is given with reference to a
worked example. Then, Section 7.3 details the implementation of Haze, a grey-box
program synthesiser designed to attack this problem. Section 7.4 and Section 7.5
present a set of synthesis benchmark problems, and compare Haze’s performance on
them against a set of related synthesisers and lifters.
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Type 1

Runtime Complexity 2

Memory Trace 3

Instruction Distribution 4

IO Examples 5

void (int a, int b,

float* c, float* d,

float* e)

a

b

R:0x696e2074 R:0x68652064 R:0x61792077

R:0x6974206f R:0x73206f66 R:0x7574206f

W:0x756e6177 R:0x65207374 W:0x61792061

R:0x65207377 R:0x65617420 W:0x20612072

I O

for(int i=x; i<n; ++i) {

float g = c();

float h = g*a;

...;

}

for(int i=0; i<a; ++i) {

float f = c*d*e;

int h = i%b;

...;

}

for(int i=0; i<a; ++i) {

for(int j=0; j<b; ++j) {

...;

}

}

for(int j=0; j<a; ++j) {

for(int i=0; i<j; ++i)

for(int k=0; k<a; ++k)

...;

}

for(int i=0; i<a; ++i) {

for(int j=0; j<b; ++j) {

c[j] = ...;

}

}

for(int j=0; j<a; ++j) {

for(int i=0; i<b; ++i)

... = d[i];

c[j] = ...;

}

for(int j=0; j<a; ++j)

for(int i=0; i<b; ++i) {

... = i+j*a;

... = c[...]*d[i];

}

for (int j=0; j<a; ++j)

for (int i=0; i<b; ++i) {

... = j/i;

... = c[a%j]-d[i];

}

for(int j=0; j<a; ++j)

for(int i=0; i<b; ++i) {

int x = i+j*a;

e[j] += c[x]*d[i];

}

Figure 7.1: The left column shows types of information used for disambiguating syn-
thesis candidates, and the right hand column shows a subset of the space of potential
candidates at each step. As more information is obtained, the space is narrowed, with
candidates coloured pink discarded due to their incompatibility with newly avail-
able grey-box information. Yellow candidates are compatible and pass onto the next
stage. The green box shows the successful synthesised candidate that matches the
input/output behaviour of the component (dense matrix-vector multiplication).
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7.2 Overview

The aim of this chapter is to generalise the black-box approaches to program synthesis
developed in Chapters 4 and 5 to include “grey-box” information exposed by actual
executions of a component. Because the shared eventual goal of these chapters is to
enable the porting and re-targeting of application code using such components, the
approach taken in this chapter focuses on the synthesis of components for which there
would be a likely performance benefit from re-targeting. These are typically regular,
data-centric functions that represent a performance bottleneck within a system.

In the remainder of this section, a high-level example is used to explain the ideas
that underpin grey-box synthesis as it is implemented in this chapter, and a comparison
is made against other common strategies for program synthesis from the literature.

7.2.1 Example

Consider a scenario (as proposed similarly in Chapters 4 and 5 where an application
makes a call to an external library, but a newer, faster implementation for the same task
is available from a different library. Migrating the application from the old library to
the new is a useful automated software engineering task. However, the source code
for either library is not available to help specify and verify the migration.

By using grey-box information gathered from executions of both libraries, synthe-
sis can be used effectively to construct programs equivalent to the relevant library
functions. This information is considered incrementally (from least to most device-
specific), depending on what can practically be obtained from the particular oracle.
Figure 7.1 summarises the gathering of this information for an representative compo-
nent; reference to it is made throughout this section.

Type Signature The most important type of information is the type signature of the
underlying component. While it is not obtained in the same way as the other
types (the type signature is static and available up-front, rather than as the
result of observing dynamic component executions). Having the type signature
available allows a synthesiser to interpret the structure of data being passed into
and out of the component; this in turn allows input examples to be constructed
automatically for the component. However, it does little to narrow the search
space of potential solutions. At stage 1 , only egregiously incorrect candidates
can be ruled out, and many possible programs with the correct signature remain
in consideration.

Runtime When executing a component to collect input-output (IO) examples to verify
observational equivalence against candidate synthesised programs, the elapsed
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runtime of the component can be easily observed at the same time. The com-
ponent must be executed anyway to observe its behaviour, and so observing its
runtime adds very little overhead to a synthesis workflow.

Runtime complexity information gives a partial insight into how the internal
component implementation uses the parameters it is passed. For example, at
stage 2 it is observed that the component’s execution time scales linearly in the
value of both parameters a and b (i.e. it is both ∈ Θ(0) and ∈ Θ(1)).

This observation allows the space of potential solutions to be narrowed signif-
icantly; the candidate in the pink box at stage 2 can be discarded as it has
complexity Θ(03), while the yellow candidate has complexity Θ(01) and can
therefore be retained.

Memory Traces For many types of component it is possible to observe a trace of the
memory addresses accessed during its execution. The mechanism by which this
observation can be carried out depends on the precise implementation of the
component oracle. For example, architecture-specific binary tracing could be
used when the component is an executable or library, or a JTAG interface when
it is implemented in hardware.

If such traces are indeed available for a component oracle, the pattern of memory
addresses accessed during each execution can be used to refine the space of
potential candidates. For example, the traces at stage 3 can all be observed to
contain patterns of accesses to the arrays c and d . This rules out a substantial
proportion of the control-flow structures considered previously: the candidate
in the pink box can be safely discarded as it makes no reference to array d .

Performance Counters Given the partial program structure above, the final step in the
synthesis process is to work out the actual computation being performed by the
component (i.e. instantiate a program sketch into a complete program). Many
synthesisers perform an expensive enumerative search at this point if they cannot
discharge the process to a formal method such as an SMT solver. Reducing the
number of programs considered during this exponential search is an important
mechanism by which the entire synthesis process can be optimised.

If the component conceptually executes sequences of instructions, the distri-
bution of the type of instruction is an important constraint on what programs
should be considered in this enumerative search process. For example, at stage
4 , it is observed that add and multiply instructions are approximately equal
in frequency. All other types of instruction occur infrequently or not at all, and
can therefore be discarded. From this observation, the candidate in the yellow
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box is therefore far more likely to be correct than the one in the pink box (which
performs several operations that the component does not, such as divisions and
modulos).

Input-Output Examples Finally, the input-output examples gathered from the com-
ponent can be used to authoritatively identify a correct solution through obser-
vational equivalence. At stage 5 , the collected examples show that the correct
solution is the code in the green box (a general matrix-vector multiplication).

7.2.2 Synthesis for Lifting

The grey-box approach to synthesis presented in this chapter can be compared to other
common techniques used for lifting programs from specifications. Typically, existing
approaches are either black- orwhite-box (i.e. component implementations unavailable
or available, respectively), and are often multi-modal. Grey-box synthesis combines
aspects of all of these styles.

White-box Synthesis In classical synthesis, an external formal specification is pro-
vided which can be used to direct the construction of programs via, for example,
counterexample-guided search (CEGIS) [51, 54]. Typically, this type of synthesis
is used when the aim is to lift a high-level specification from a low-level im-
plementation, and both levels of abstraction permit verification or interpretation
through formal tools such as SMT solvers.

These systems can be characterised these as white-box schemes, because extrinsic
specifications are provided for solutions, and the structure of candidate solutions
can be introspected on to enable formal verification (that is, all the internal details
of both the component and solution are known).

Black-box Synthesis An alternative approach is black-box synthesis, often referred to
as programming by example (PBE) in some problem domains. Here, specifications
are simply input-output examples that provide pointwise constraints on solution
behaviour. The internal structure of the target component is not known or avail-
able, and so formal verification of candidates against the component is not pos-
sible. This means that observational equivalence is often the strongest possible
correctness guarantee. There exists a substantial, often machine learning-based
body of work in this area [77, 80, 141, 142].

Unfortunately, from a systems perspective, purely example-driven, black-box
synthesis is ill-suited to the complexity and specifications found in real-world
problems, leading to the proliferation of domain-specialised lifters that require
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substantial assumptions to be made of the behaviour of their target components
[96].

Multi-Modal Specifications Combining multiple specifications for a single synthesis
problem has been explored in software engineering tasks (such as API migration
[165]). By combining different types of specification, the solution search space
can be constrained in several different directions at once; this may not be possible
when considering only one modality.

Much of the recent work on multi-modal synthesis has focused on neural tech-
niques, which excel at reducing diverse modalities into homogeneous internal
representations. For example, the use of natural language descriptions alongside
IO examples has recently proved fruitful in neural program synthesis [84, 92].
However, such approaches are typically weak (the programs are restricted to
small DSLs), specialised (string processing and regular expressions respectively),
and require external assistance in the form of human-provided text descriptions.

Because grey-box synthesis assumes partial availability of a component’s structure
through behavioural observations, but does not assume that formal verification tools
and workflows are practical, it represents a conceptual middle-ground between black-
and white-box synthesis. This is an intuitive space to occupy: typically, black-box sce-
narios do not arise as a result of deliberate obfuscation on the part of the component
vendor. Rather, they are simply the result of it being easier not to provide full specifica-
tions for components. Using the partial information left behind as a byproduct of this
process is a pragmatic design choice intended to take advantage of as much contextual
information as possible.

Similarly, grey-box synthesis adopts the most important facet of multi-modal syn-
thesis: the use ofmultiple distinct types of specification for a problem,with some of the
types providing “non correctness” information that does not fully specify a solution.
The distinct element of grey-box synthesis from typical multi-modal systems is that
these specifications are obtained from observations of component behaviour, rather
than from external sources.

7.3 Haze: Grey-Box Synthesis

This section describes the implementation of Haze, a synthesiser designed to demon-
strate the grey-box synthesis methodologies introduced previously. It is structured
as follows: first, in Section 7.3.1, an overview of Haze’s core synthesis algorithm and
workflow is given, along with comparisons to relevant aspects of Annote and Presyn.
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Component

Memory Traces

Runtime Complexity

Instruction Distribution

Input
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Interface Sketch Candidate

Output
Examples

Solution

Synthesiser

Figure 7.2: Full system diagram showing how information flows through the stages of
our synthesiser.

Then, in Section 7.3.2, each of the sources of grey-box information consumed by Haze
is introduced, along with a detailed description of how that information is used to
narrow the search space of candidate programs. Finally, Section 7.3.3 analyses the
correctness and safety of Haze’s synthesis procedures.

7.3.1 Overview

Figure 7.2 shows an overview of Haze’s approach. From a component’s interface (or-
acle access to call the component, and a type signature), inputs can be generated and
used call the component. Doing so returns corresponding outputs, which are used to
form input-output examples for later observational equivalence testing. By varying
inputs in a structured manner, it is possible to observe how they affect execution time;
the execution time is used to inform the construction of a sketch (in the common sketch
language described in Section 3.5). If available, memory traces and performance coun-
ters can be used to further refine the sketch and provide constraints on the potential
data-flow in candidated programs.

Based on these constraints, candidates are iteratively sampled from the space of
possible programs, until one is identified that matches the input-output examples
generated previously from the component. Many such examples can be generated to
ensure that observational equivalence is a sufficiently strong correctness criterion. In
Section 7.3.3, the methodology used to generate sensible inputs is examined, as well as
the use of model checking to verify formally that programs are correctly synthesised.

Algorithm 5 summarises the core synthesis algorithm used by Haze, analogously
to Algorithm 4 for Presyn. The remainder of this section explains the steps of this
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Algorithm 5 Haze’s core synthesis loop, assuming that all possible grey-box infor-
mation is available for the component oracle in question. The acquisition of runtime
complexity and instruction distribution information is performed at the same time as
input-output examples are generated for the function, and for brevity is not included
in this figure.
function Synthesise(C0A64C)

B:4C2ℎ4B← {all sketches satisfying runtime complexity of C0A64C}
CA024B← {memory traces from executions of C0A64C}
B2>A4B← ∅
for each B:4C2ℎ in B:4C2ℎ4B do

?A>GH← B:4C2ℎ extended with dummy memory accesses
B:4C2ℎ)A024B← traces from executing ?A>GH
B2>A4B[B:4C2ℎ] ←meanB∈B:4C2ℎ)A024B(maxC∈CA024B(Align(B, C)))

end for

A0=:43← sort(B2>A4B)
loop

B:4C2ℎ← geometric sample from A0=:43

for each ℎ>;4 in B:4C2ℎ.ℎ>;4B do
recompute live values and dependencies
>?← opcode sampled proportionately to C0A64C
;8E4← sorted live values at ℎ>;4
E1 , . . . , E=← samples from ;8E4

E← >?(E1 , E2 , . . . , E=)
Rauw-NT(ℎ>;4 , E)

end for

?A>6A0<← B:4C2ℎ.2><?8;4()
if ?A>6A0< satisfies all 4G0<?;4B then

return ?A>6A0<

end if

end loop

end function
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algorithm and associated implementation in detail.

7.3.2 Implementing Haze

This section explains in detail the synthesis algorithm listed in Algorithm 5, working
through the grey-box information and synthesis steps taken by Haze in the order they
are used.

7.3.2.1 Type Signature

The first source of information used byHaze is the type signature of the target function.
Having access to the type signature allows safe, structured interpretation of the inputs
passed to or outputs received from the target component. Without a type signature,
understanding the structure of input-output examples would be intractable.

The assumption that access to the target component’s type signature is available is
shared with Annote and Presyn, and is not an onerous additional requirement given
that a callable oracle must somehow be implemented for the target component.

7.3.2.2 Generating Inputs

Haze, like Annote and Presyn, uses observational equivalence over a set of ran-
domly generated input-output examples to specify correctness for candidate synthe-
sised programs. For those implementations, demonstrating that the candidate and
target function are equivalent is the only role of the input examples; branch cov-
erage experiments (in Section 6.5.3) show that randomly-generated examples do so
adequately for typical synthesis targets.

However, Haze requires a broader guarantee from the input examples it generates.
Rather than only demonstrating observational equivalence, the input examples must
be able to induce a broad range of dynamic behaviours from the target component;
these behaviours are not captured by input-output examples and so are not verified by
code-coverage experiments.

As an illustration of the problem, consider the execution time of the target compo-
nent. This is one of the sources of grey-box information used by Haze for synthesis;
its exact interpretation and use is expanded on in the following section. It is intuitive
that if the inputs generated for a component are insufficiently broad, then it may not
be possible to fully observe variations in its execution time.

Figure 7.3b demonstrates this effect for a simple synthesis problem taken from
the Simpl benchmark suite [70]. The execution time of this example, on randomly-
generated inputs from three different schemes is plotted. For the “small” scheme used
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1 int triangle_sum(int n) {

2 int r = 0;

3 for (int i = 1; i < n; ++i)

4 for (int m = 1; m < i; ++m)

5 r += m;

6 return r;

7 }

(a) Example synthesis problem, with time com-
plexity of $(=2) in its single parameter = [70].

(b) Execution times of triangle_sum plotted against 10 different input values of =, for three
input generation strategies: small ([−64,64]) and large ([−1024,1024]) uniform random, and
linearly spaced.

Figure 7.3: Example showing the benefit of a partially-deterministic, interpretable
input generation strategy when considering dynamic behaviour of synthesis oracles.

by Presyn (and verified to be adequate with respect to branch coverage), no inputs
large enough to confidently observe a variation in execution time are generated; for = ∈
[−64,64], the execution time is within measurement error and appears approximately
constant.

One possible solution to this problem is to expand the sampling range; again in
Figure 7.3b, the “large” regime uses the range [−1024,1024], which is large enough
to show clear increases in execution time. However, in this case the sampled values
are clustered around = = 0, with only two exceeding = = 300. As a result of this
nondeterminism, a large number of input values need to be sampled to consistently
and confidently observe the quadratic complexity of triangle_sum (Figure 7.3a).

The solution adopted by Haze, as implemented in this chapter, is to combine a
randomly-generated schemewith adeterministic scheme that generates linearly spaced
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Figure 7.4: Comparison of fitted runtime complexity models for four functions in the
dataset used to evaluateHaze. Using the linear sampling regime, complexity in a single
parameter can be reliably inferred (shaded regions show 95% confidence intervals).

data points. Doing so produces the clearest, most consistent results in Figure 7.3b.
While it is possible that this combined scheme does not fully capture the potential
range of behaviours in some other scenarios, it was judged to be adequate with respect
to the potential behavioural variations exhibited by Haze. For additional sources of
grey-box information in future work, additional structure in the input data may be
required to fully exercise the dynamic behaviour of components.

7.3.2.3 Performance Models

There is a strong, intuitive correlation between a program’s control flow structure and
its runtime performance characteristics; if particular control flow structures are present
in a program, then it is likely that they imply a portion of the runtime complexity class
of that program. For example, if a loop of the form for(int i=0; i<N; ++i) is
present, then that program is likely to have complexity of the form $(N · . . . ).

Automatically computing a program’s runtime complexity in terms of its individ-
ual parameters is a well-established research problem; being able to do so enables a
number of useful tasks. For example, by modelling runtime complexity, Calotoiu et al.
[174] predict scalability issues in high-performance workloads that would not become
evident before deployment to a production environment.

Haze uses the observed runtime performance of a target component to search for
combinations of fragments that are likely to produce that runtime complexity. To do
so, a new collection of fragment templates derived from (but substantially extending)
the library used by Presyn was constructed, using the sketch language semantics
introduced in Section 3.5. Each fragment in this collection was annotated with its
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runtime complexity, and the fragment compilation semantics were extended with
rules for how their complexities compose.

To formally describe the runtime performance of a synthesis target, a notational
framework similar to the Performance Model Normal Form (PMNF) of Calotoiu et al.
[174, 175] is used. This normal form provides a parameterised equation that describes
the runtime performance of a program in terms of each of its scalar inputs G1 , . . . , G<

individually:

5 (G8) = 20 · 21G
?8
8
· 22log

@8
2 (G8) (7.1)

Haze fits a model of this form for a synthesis target by first recording its runtime
at different values of each scalar parameter (using the combined linear-random input
generation strategy described in the previous section). Then, exponents ?8 , @8 ∈ Q and
constant factors 20 , 21 , 22 are regressed against the observed performance to produce
the best-fitting performance model for each input parameter. Finally, the models are
grouped into broader categories for the purposes of sketch search.

7.3.2.3.1 Sketches The library of fragment templates used to driveHaze’s search for
program sketches is based on intuitive, common patterns likely to occur in programs
(and that can be mapped readily onto their runtime complexity in terms of template
parameters). This library was based on prior work to assemble a set of common idiom

descriptions written in the IDL DSL [112]. In this context, an idiom represents a full
computation or class of computations (e.g. “dot product” or “histogram”). The de-
scription of each idiom is built compositionally from smaller components (for example,
a loop is specified in terms of the description of a single-entry single-exit region with
some additional properties); these smaller components are broadly the source of the
fragment templates used by Haze.

From the default library of idioms developed by Ginsbach et al. [112], the following
criteria were used to select ones appropriate for Haze. First, they should be expressed
at a similar level of abstraction to sketches in comparable implementations [61, 70]; the
aim of Haze is not to compose entire high-level algorithms. Secondly, they should be
readily translatable to a concrete fragment definition (some descriptions cannot easily
be). Finally, and optionally, the translated code should depend on a free variable to
produce a template rather than a fragment (for example, the loop bound in a for-loop).

Then, each IDL descriptionwas translated into a fragment implementation by hand
(i.e. for each description, a code generation routine was implemented that produces
code satisfying the original IDLdescription). Each implementationwasverifiedagainst
the original description, and an appropriate complexity class was associated with each
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Table 7.1: List of fragment types used by Haze. These can be divided into three
broad groups: fragments that perform iteration, fragments that instantiate specific
computations over live IR values, and fragments that create non-iterative control flow
structures. Fragments marked with (†) are not constant-time operations in reality, but
their runtime complexity does not depend on sketch parameters; for the purposes of
search, they are labelled as $(1) for consistency of implementation. Those marked
with (★) do not apply multiplication of complexities under composition.

Group Fragment Complexity Description

Iteration

bounded(n) $(=) These fragments represent
traditional C-style loops, and are
differentiated largely by their
termination conditions. Some
(e.g. collect(n) include
specialised dataflow code to act
over arrays, while others are
simply control flow with
fragment holes.

collect(n) $(=)
delim() $(1) (†)
divided(n) $(;>6(=))
fixed(n) $(=)
loop(n) $(=)
static() $(1)
triangular(m,n) $(<=)
until() $(1) (†)

Dataflow
affine() $(1) Computations identified as likely

to appear in the body of nested
control flow structures.

index() $(1)
indirect() $(1)

Control

if() $(1) Non-iterative control flow, as
well as mechanisms to plumb
several fragments together
intuitively, and specific data-flow
placeholders.

if_else() max(_,_) (★)
block() $(1)
empty() $(1)
seq() _+_ (★)
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$(1)

$(<2)

×

$(=2) $(log2
2(?))

×

$(<=2)$(=4) $(<2=2)
× ×

Figure 7.5: Partial search tree for a sketch with overall complexity $(<=3log2(?)) in
parameters <,=, ?. Each labeled node in the tree represents the accumulated com-
plexity; paths through the tree are ruled out as their associated complexity becomes
unviable.

one by inspection (in terms of its free variables). Table 7.1 lists the full set of fragments
collected.

The set of fragmentsusedbyHaze to begin synthesis represents apotential source of
bias, and implicitly encodes assumptions about the structure of the space of programs
targeted. While not fully general, the set of collected fragments in Table 7.1 can describe
the majority of performance-sensitive functions for which migration to an optimised
implementation is a desirable goal. Additionally, as the set of fragments is derived
from an existing set of idiomatic patterns, the potential for bias towards a particular
set of synthesis problems is reduced.

7.3.2.3.2 Tree Search A set of possible program sketches can be constructed from
complexity-labelled fragments using a simple tree search procedure. Initially, the
fragments are partitioned into two groups: those that have $(1) complexity in terms
of the function’s parameters, and those that have greater than $(1) complexity.

For each parameter’s performancemodel, a set of fragments that could contribute to
that model are identified. For example, a sketch with complexity $(=2) could appear
if the overall complexity in = was $(=3), but not if it were only $(=) (for example).
Then, compositions of the sketches for the full set of parameters are enumerated,
pruning compositions that exceed the total required complexity (see Figure 7.5 for an
illustration of this).
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7.3.2.4 Memory Traces

For many components, it is possible to obtain a trace of the memory addresses they
access during their computation. While this is a more specific notion than execution
time (and therefore is less likely to be available for every possible type of component
oracle), it is well-defined for many of the most common types. For example, an
executing library or binary can have its execution instrumented with a dynamic binary
instrumentation framework such as Pin [176], or a hardware device can be interrogated
using a standard JTAG interface.

Haze uses memory traces to rank the sketches produced previously by how likely
they each are to produce a correct solution. No information is discarded by Haze
at this point; if a sketch is identified as a possible candidate previously, then it will
remain a candidate after this ranking. As a result, the memory tracing step is optional,
allowing for components for which it cannot be implemented to be analysed.

7.3.2.4.1 Producing Traces First, define amemory trace) to be an ordered sequence
of pairs:

) , ((<0 , 00), . . . (<= , 0=)) (7.2)

where each <8 indicates the type of access made (read or write), and each 08 indicates
the address of that access. To minimise the burden of supplying this information (and
therefore to maximise the number of potential component oracles that can be used
with this stage), neither the specific value read or written, nor the size of each access
are recorded.

The concretememory addresses in a tracewill be different even between executions
of the same program, and so the traces need to be normalised to a common representa-
tion that can be compared across executions. First, a set of base addresses in the trace
are identified, which all accesses will be expressed relative to. To do so, addresses
that appear at the beginning of contiguous sequences of accesses are identified; these
addresses are base addresses. Then, the closest matching base address is subtracted
from each access to produce a (base, offset) pair, such that no offset is negative.

The assumptions made here are similar to, but weaker than those made by related
work in the area of memory trace analysis [177]; where that work requires the issuing
instruction for each memory operation to be identified, the eventual alignment and
ranking of traces induced by Haze is an approximate procedure and requires only
similarity (rather than full equivalence) between the sketch and reference traces.

Next, code is inserted into each sketch that imitatesmemory accesses at appropriate
points. To do so, a read instruction is added whenever a memory address becomes
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live in the sketch code (i.e. when the sketch computes an offset to a pointer), and a
write before the point that address is no longer live. Heuristically, this represents a
simple usage pattern where values are loaded from memory, operated on by the (as
yet unsynthesised) sketch body, then written back to memory. Each sketch is executed
several times with this instrumentation, selecting randomly chosen assignments for
branch conditions. This produces a set of memory traces for each sketch that represent
a non-exhaustive subset of its possible behaviours.

7.3.2.4.2 Scoring&Ranking Traces TheGotoh sequence alignment algorithm [178]
is used to identify potentially conserved regions between a sketch and program trace.
This algorithm was selected specifically to deal with trace sections where long gaps
appear; a likely scenario when considering traces generated from executing programs.
The resulting alignment score represents how well the behaviours of the program
trace are explained by the sketch trace. No alignment will score perfectly, but better
correspondences will align more closely.

From the target program, a set T of ground-truth traces is available, as well as a set
T( of traces from each sketch (. From this, the aim is to select the sketch that explains
the set of program traces best on aggregate. For an individual sketch trace B ∈ T(,
define a scoring function @(B):

@(B) ,max{align(B, C) | C ∈ T} (7.3)

That is, the score for an individual sketch trace is simply its best alignment score
with any program trace. This is intuitive; program traces may correspond to different
executions, and so it cannot be expected that a single sketch trace explains all possible
program traces.

Then, for a sketch ( with traces B1 , . . . , B# , define an aggregated scoring function
&(():

&(() , 1
#

#∑
8=1

@(B8) (7.4)

Sketches that score highest with respect to & are those that on average, generate
traces that best explain a trace from the set of program traces T.

Finally, sketches are ranked from 1 to # according to their & score, then assigned
a sampling probability using a geometric distribution:

P(sketch :) , (1− ?):−1? (7.5)

Haze sets ? = 0.5, but ? can be varied to reflect different priors on the structure of
the ranked sketch set (i.e. if more sketches are likely to be viable, decrease ?).
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7.3.2.5 Instruction Type Distribution

Many synthesis procedures ultimately terminate in a resource-intensive enumerative
search for a sequence of instructions or operations that comprise a correct solution.
For Haze, this entails searching for an instantiation of each hole in a program sketch
with a concrete program value.

To accelerate this search for concrete instructions, Haze considers the observed

distribution of instruction types dispatched by the target component as it executes. By
doing so, the synthesis process can be biased towards programs that produce similar
distributions to the target.

More precisely, for a set of possible instruction opcodes:

$ , {>0 , >1 , . . . , >=} (7.6)

Haze constructs a cumulative count � across all executions of the component:

� : $ ↦→N (7.7)

of how many times each opcode was observed during execution. From this count,
Haze then constructs a probability distribution P satisfying, for some � ∈ [0, 1

= ):

∀8 . (P(>8)− �) ∼ �(8) ∧ P(>8) ≥ � (7.8)

7.3.2.5.1 Search The space of potential instantiations for a set of holes is combi-
natorially large. A type-safe instruction opcode is sampled for each hole from the
probability distribution described above, then possible arguments for that instruction
are enumerated using a set of heuristics (e.g. more local arguments are preferred to
distant ones). The search space is restricted as values are assigned to holes as a result
of Rauw-NT’s type propagation mechanisms (see Section 3.6.1).

This search for instructions from the observed instruction type distribution is the
final step in Haze’s core synthesis algorithm (as presented in Algorithm 5). The
generated candidate programs can now be tested for correctness using the set of
collected input-output examples, and eventually returned to the user.

7.3.2.6 Assumptions

When implementing and evaluating any program synthesiser, it is important to note
the assumptions made of the underlying program space. Other than the assumptions
implicitly encoded by the structure of its fragment library, Haze requires that the
type signature of a synthesis problem uses only primitive types (integers, characters,
floating-point), or pointers to those types. Structures composed of these types are not
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1 int fact(int n) {

2 int r = 1;

3 while (n-- > 1) r *= n;

4 return r;

5 }

Figure 7.6: Example synthesis problem demonstrating integer overflow; one possible
cause of safety issues when generating inputs [70].

supported, but would not require conceptual extensions to do so. No fragments in
Haze’s library deal with pointers to pointers (e.g. int** ), but could be implemented
similarly to those described previously.

The testing framework used byHaze generates non-aliased, word-aligned pointers;
the trace alignment phase does not explicitly depend on these, but is likely to produce
incorrect alignments throughmisidentification of base addresseswere a different input
generation strategy to be used that did so.

An assumption shared with many synthesisers in the literature is that randomly-
generated input values are sufficient to exercise all possible behaviours of the reference
function used; Section 7.5.4 examines how this assumption can be validated on the
dataset used to evaluate Haze.

7.3.3 Safe Synthesis

Given that little is assumed of the target components Haze targets for synthesis, it
is critical that the synthesis process is safe. In particular, it is important to consider
the safe generation of component inputs and the correctness of synthesis (i.e. how can
solutions be verified, and is input-output equivalence a sufficient standard to establish
correctness?).

7.3.3.1 Safety and Bounding

Not all programs can safely accept all possible values; some programs may exhibit
incorrect or unsafe behaviour when called with certain inputs. For example, the
program listed in Figure 7.6 will overflow a standard 32-bit integer for values of =
greater than 12. As well as integer overflow, there are safety issues for programs that
access memory (for example, if a parameter is used as an index into an array also
passed to the function). Where possible, oracles can (using implementation-specific
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methods such as checking an interrupt register) report error states as a single bit flag;
when this is the case, the faulting input is not included in the sets of IO examples used
to specify correctness for a problem.

Fully random input generationmethods struggle to concisely capture the behaviour
of reference functions in the presence of these safety issues. For example, the “small”
and “large” fully randomregimes in Figure 7.3bwill both generate uninteresting (= ≤ 1)
or unsafe (= > 12) inputs, the majority of the times they are invoked. This means that
a large number of attempted inputs must be tried to produce the required number of
working inputs.

Haze applies the heuristic that programs exhibit suchunsafe behaviour for a contin-
uous, infinite range of values either above or belowa threshold. Under this assumption,
when a run of unsafe behaviour is observed, it backs off and retries input generation
with the first observed unsafe value as the new upper bound on input. Intuitively, this
compresses the same number of linearly spaced inputs into the safe interval supported
by the oracle.

7.3.3.2 Verifying Synthesised Programs

In the programming by example-like setting of grey-box synthesis, the only possible
correctness specification for a synthesis problem is equivalent behaviour over a set
of input-output examples. This is observational equivalence: does the solution’s
behaviour look the same for all the input examples attempted? Similarly to Annote
andPresyn,Haze is unable toprovide a general assurance of correctness that is stronger
than observational equivalence.

However, if the underlying code for a particular problem is available, formal ver-
ification tools can be used to provide stronger and more precise guarantees on the
correctness of a solution. KLEE [131] is a suite of tools for performing symbolic exe-

cution on LLVM IR programs. By doing so, it is possible to efficiently discover code
paths within, or inputs to a program that cause errors such as integer overflow or
out-of-bounds accesses to occur.

The application of KLEE used by Haze on reference programs with available code
is to identify any inputs that cause the two functions (i.e. a reference implementation
and a candidate synthesised solution) to produce different behaviour. A modified
version of the basic function equivalence procedure suggested by Ramos and Engler
[179] is applied to do so, with the key addition of a modernised implementation of the
symbolic floating point support from KLEE-FLOAT [132]. This addition is necessary
as the majority of Haze’s evaluation problems are stated over floating point numbers,
and cannot be symbolised using mainline KLEE.
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7.4 Experimental Setup

To evaluate Haze, a dataset of synthesis problems was constructed that extends the
evaluation set for Presyn described in Section 5.6. This extended set contains the same
original synthesis benchmark problems as the Presyn set, but increases the difficulty
of the problems derived from real-world library functions.

As well as comparing the success of Haze purely against other program synthesis-
ers, a comparison to Helium [96] is made to evaluate how well Haze performs against
heavily domain-specialised binary lifting tools. This section describes the selection
process for both the dataset used to evaluate Haze, and the implementations against
which it is compared.

7.4.1 Dataset

The starting point for Haze’s evaluation set is a set of 112 synthesis problems used
to evaluate Presyn, as described in Chapter 5. This set of problems covers a range
of domains (mathematical primitives, vector operations, string manipulations), and
subsumes the evaluation sets for a number of other synthesisers [70, 72, 77, 84]. Full
details of how this dataset was assembled are given in Section 5.6.

This dataset was extended with a further 78 synthesis problems intended to chal-
lenge Haze’s ability to lift real-world library functions. Grouped by their respective
origins, these problems are as follows:

Benchmark Kernels Suites of performance benchmarks are often used to evaluate
binary lifting techniques [177]; three such suites were identified that provide
a natural increase in complexity from the synthesis problems above. These
were UTDSP [180], DSPStone [181] and PolyBench [182] (# = 18, # = 15, # = 30
respectively). The 63 new problems represent individual benchmark kernels

that are more challenging than typical program synthesis problems, with the
PolyBench set in particular containing some with far greater complexity than
any existing synthesis techniques are able to scale to.

Specialized Domains Image processing functions and tensor manipulations provide
two novel sets of evaluation problems that model real-world code, in two do-
mains relevant to the synthesisers Haze is evaluated against. A set of # = 10
image-processing functions derived from [96] were evaluated; these covered
both low-level implementation details of individual functions, as well as high-
level heuristic descriptions (such as the “Blend” and “Filter” categories identified
by Ahmad et al. [98]).
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Understanding and manipulating tensor operations is an important task in op-
timising many contemporary compute-bound workloads; # = 5 common tensor
manipulations were generated as additional problems using the Taco compiler
[26, 183]. Each manipulation had a different set of optimizations and scheduling
transformations applied to it in order to evaluate how well Haze responds to
changes in implementation detail; for example, tiling of loop nests.

7.4.2 Experiments

Haze is evaluated against the following leading program synthesisers and lifting ap-
proaches; Presyn’s results (see Section 5.8) show that it outperforms several traditional
synthesisers on the set of 112 synthesis problems from its own dataset given above;
SketchAdapt [84] is a leading example of a neural synthesiser, and Helium [96] is
a domain-specific lifter for image-processing applications recovering high-level code
from dynamic observations of an application executing.

Because these synthesisers and lifters target diverse problem domains and specifi-
cation formats, running them all on the same set of benchmarks is challenging. This
is a problem shared by other work in synthesis [46], and the approaches taken to nor-
malise the additional 78 problems are similar to those used for Presyn’s evaluation set
in Section 5.6.

The core of Haze’s cross-evaluation is a comparison of which implementations
were able to synthesise (or lift) each benchmark problem. To do so, each benchmark
problem was adapted for the specific input requirements for each implementation.
For example, Presyn required training examples of previous syntheses, and Helium
required inputs and outputs to be read from image-like files.

All of the tools described above ran on the evaluation systemwithout modification
exceptHelium,whichwasnot possible to build successfully using its original toolchain.
To resolve this, a port of Helium’s core that supported Linux binaries was produced.
This porting process was substantial in places, especially when dealing with platform-
specific instrumentation tools.

7.5 Results

This section evaluates and analyses Haze’s synthesis performance against existing
synthesis and lifting schemes. First, the number of problems from the benchmark
suite listed previously that can be successfuly synthesised is measured. Then, the time
taken for Haze to successfully synthesise these cases is examined, and an evaluation
of the correctness of the solutions produced using model-checking is performed. This
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Table 7.2: Summary of successfully synthesised or lifted programs across the eval-
uation dataset for each implementation examined. Columns show the number of
successfully synthesised programs from each group for a single implementation.

N Presyn SketchAdapt Helium Haze

Presyn 112 96 10 - 103
UTDSP 18 6 - - 9
DSPStone 15 10 - - 13
PolyBench 30 2 - 5 14
Image 9 2 - 10 6
Tensor 5 1 - - 4

Total 190 117 10 15 149

is followed by an analysis of the grey-box information used by Haze, and an ablation
study to establish its use for synthesis.

7.5.1 Success Rate

For each synthesis or lifting implementation under test, each of the 190 synthesis
problems listed in Section 7.4.1 was attempted (with appropriate allowances to adapt
the problem for each one’s input format), recording the total successful syntheses for
each implementation, aswell as a per-groupbreakdown. These results are summarised
visually in Figure 7.7, and listed in full in Table 7.2.

Haze is the best-performing implementation across the entire dataset, andon all but
one of the individual problem groups (the image-processing kernels, where Helium’s
increased domain specialisation allows it to outperform Haze). It is also the only
implementation able to synthesise at least one example from each of the benchmark
groups.

By integratingmultiple sources of grey-box knowledge, Haze is able to outperform
comparable implementations across the dataset at large. For example, Haze is able to
learn a group of logarithmic-timeproblems fromPresyn’s benchmarksmore effectively
by using runtime complexity information to predict control flow structure (Section 7.3).
Presyn fails to predict the control flow structure for these, and so is unable to achieve
the same syntheses.

Helium outperforms all other implementations on its own specialised domain of
image processing, but fails to generalise across the dataset. SketchAdapt successfully
synthesises a small number of simple examples,but is unable to scale in complexity or
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Figure 7.7: Synthesis success rate for each synthesiser and lifter evaluated, across the
set of problem sources used to evaluate Haze.

across domains. Given that it is targeted at list-processing tasks, this is not surprising.

Where Haze fails, it does so most commonly because the sequence of instructions
required to produce a correct solution to a problem is too long; even with the help of a
probability distribution over their types, the space is too large to search effectively. Less
commonly (and primarily in the PolyBench and UTDSP groups), the required control
flow structures are not implementable using Haze’s library of fragments. Additional
fragment definitions would allow Haze to synthesise these problems, at the expense
of increased specialisation and bias in its fragment library.

7.5.2 Analysis

To directly compare the success of each implementation across the entire evaluation
dataset, the required number of fragments and instructions used by Haze for each
successful synthesis were examined. These measures are partially correlated, and
both measure the complexity of a synthesis problem. Where Haze fails to synthesise
a solution achievable using another implementation, one was written by hand as an
oracle. Figure 7.8 shows these measures plotted for each implementation.

Other existing synthesisers (Presyn, SketchAdapt) show similar clusters centered
at low instruction counts, indicating the difficulty they experience in scaling to larger
problems. Conversely, Helium synthesises very few programs in total, and its cluster is
centered at high instruction counts (it does not cover small programs at all). Compared
to existing implementations, Haze takes a significant step towards generalising across
the entire dataset; its distribution covers the widest range of fragment and instruction
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Figure 7.8: The distribution of instruction count vs. fragment count for each imple-
mentation’s successful syntheses. These are partially correlated metrics of problem
complexity for synthesis; more complex control flow requires more fragments to pro-
duce a correct solution, while more complex data flow requires more instructions to do
so.

Figure 7.9: Distributions of Haze’s required synthesis time across each group of bench-
mark problems.

counts.

7.5.3 Synthesis Time

Optimising for synthesis time was not a primary goal when implementing Haze. For
example, no directed search methods are used when generating instruction sequences
(other than the distribution of instruction opcodes obtained from the target compo-
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Table 7.3: Results obtained by model-checking programs synthesised by Haze against
their respective reference implementations. Many solutions demonstrated minor
floating-point inaccuracies that were explicitly not identified by observational equiv-
alence checks. However, beyond these cases no false-positive synthesis results were
identified.

# FP Assoc. Bugs Success

Presyn 103 11 0 100%
UTDSP 9 9 0 100%
DSPStone 13 13 0 100%
PolyBench 14 14 0 100%
Image 6 0 0 100%
Tensor 4 4 0 100%

nent). However, the results in this section suggest that Haze is usable. All successful
syntheses listed were obtained using a 3 hour threshold time on a desktop-class ma-
chine, and nearly 80% of these were obtained in under 15 minutes. Figure 7.9 shows
the full distribution of time taken for successful syntheses by Haze. It shows that
the new datasets evaluated in this chapter are significantly more complex, with Poly-
Bench providing a particular challenge. Synthesis search time, rather than gathering
input-output examples and grey-box information, dominates the total time required
to produce a solution (> 99.9%). No problems required more than 1,000 input-output
examples to be generated.

On the Tensor benchmark set, we found that standard optimisations applied to the
reference implementation oracle (for example, loop tiling) slowed, but did not defeat
Haze’s synthesis. Intuitively, this is because the memory trace ranking procedure
is less effective when the traces generated by the optimised oracle are different to
those generated by sketch candidates (which have a “handwritten” structure when
compiled). The underlying complexities are the same in each case, and so the correct
fragments are still identified by Haze. In the future, optimisations could be applied to
synthesis candidates to better liken them to the reference implementation.

7.5.4 Validity

In Section 7.3.3.2, a description is given of how the KLEE symbolic execution engine
[131] can be used to model-check synthesised programs against a reference implemen-
tation (if one exists). Table 7.3 summarises the results of doing so for the programs
Haze synthesises. A harness was constructed that asserts “for all possible inputs, the
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Figure 7.10: Frequencies of observed potential complexity classes across the dataset of
evaluation problems (with respect to scalar parameters). Names of parameters have
been standardized to =,<, ?, . . . . The class 5 (=,<) includes all classes that are both
$(=) and $(<), for fixed < and = respectively (i.e. both $(=<) and $(= +<) are
subsumed). Classes are ordered approximately from left to right, and from top to
bottom by increasing complexity.

synthesised solution produces the same output as the reference”. By using KLEE’s
symbolic execution capabilities, this assertion can be checked formally. No programs
synthesised by Haze that exhibited significantly different behaviour to the correspond-
ing reference implementation were identified by doing so.

More precisely, many synthesised programs did in fact differ on minor floating-
point arithmetic points when compared to the reference (for example, synthesising
the expression (0 ∗ 1) ∗ 2 instead of 0 ∗ (1 ∗ 2) is technically incorrect in a non-associative
arithmetic). Because the input-output example-based correctness checker used by
Haze (see Section 3.6) adjusts for such cases using a ULP-based sliding equality check,
such differences were common. These examples are summarised as FP Assoc. in
Table 7.3.

After disregarding minor floating-point differences, no synthesised programs (i.e.
those judged to be correctwith respect to IO examples)were then judged to be incorrect
by the model checker (Bugs in Table 7.3). This validates the use of an example-based,
observational equivalence approach to determining correctness.
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7.5.5 Grey-Box Information

Of the three sources of grey-box information considered by Haze (performancemodel,
memory trace and instructiondistribution), only the analysis of the performancemodel
can lead to the exclusion of correct syntheses; incorrect alignment rankings or instruc-
tion sampling distributions will only slow down the discovery of correct solutions. It
is therefore important to validate the performance model results extracted by Haze
from each oracle.

To do so, the complexity inferred by Haze for each individual parameter was
compared by hand to the reference code used to implement the oracle. In all but one of
the cases where Haze predicted a non-constant asymptotic complexity for a parameter,
its prediction was correct; this accuracy is to some extent an artifact of the type of
function targeted by Haze (i.e. regular, data-centric functions targeted for optimised
implementations). The incorrectly predicted case was the collatz benchmark from
Presyn’s evaluation set, which performs irregular, data-dependent control flow. For
the type of synthesis problem targeted by Haze, per-parameter runtime complexity
can be predicted accurately.

7.5.6 Ablation Study

To determine the effect of each source of grey-box information on Haze’s synthesis
performance, a partial ablation study was performed by omitting each of the sources
of grey-box information in turn.

Four ablated variants of Haze were constructed as follows:

Perf: Runtime performance models only, no ranking of sketches, instructions are sam-
pled uniformly.

Perf+Trace: Runtime performance and memory traces; sketches are ranked but in-
structions are sampled uniformly.

Perf+Dist: Runtime performance and instruction distributions; no sketch ranking but
instructions are sampled from learned distributions.

All: The full Haze implementation.

For each variant of Haze, each problem in the evaluation dataset was attempted,
with the mean number of candidates required to do so successfully being recorded.
The results achieved by doing so are shown in Figure 7.11.

Adding each source of information produces a clear improvement to the achievable
synthesis performance, though they do so through different mechanisms. Perf+Dist
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Figure 7.11: Cumulative successful syntheses as a proportion of the entire evaluation
dataset for four different versions of Haze (baseline using only performance models to
select sketches, adding memory traces and instruction distributions respectively, and
the full Haze pipeline). The distribution of successful syntheses is long-tailed, and so
for clarity this figure shows only the initial phase where the majority of successes are
achieved (< 500,000) candidates evaluated). Parenthesised values indicate the final
success rate for each version; note that in extremis, the version using memory traces
outperforms the one using instruction distributions.

discovers programs with more instructions more quickly than the Perf baseline. Sim-
ilarly, the Perf+Trace variant allowed programs with more complex control flow to be
synthesised earlier.

Because problems with complex control flow are likely to also require more in-
structions to be correctly identified, the Perf+Dist variant requires more candidates to
be evaluated before beginning to return successes. By combining the two approaches
in Haze, the initial phase of synthesis is as productive as Perf+Dist alone, but is able
to scale to complex problems similarly to Perf+Trace.

7.6 Related Work

Haze aims to strike a balance between the generality of inductive program synthesis
and the power of domain-specific lifting. By using inductive synthesis techniques,
Haze is able to make fewer assumptions on the structure of solutions than lifters do.
For example, Kamil et al. [97] and Ahmad et al. [98] both require that their target
program is an image-processing kernel compatible with a particular domain-specific
language, while Rodríguez et al. [169] operate purely within the polyhedral model.
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The “grey-box” approach taken by Haze is validated by recent work in synthesis
that investigates similar sources of “grey-box” information to Haze. For example,
Hu et al. [184] apply asymptotic resource bounds to traditional functional specifications.
Their use of recursive resource bound typing is analogous (though more expressive)
to Haze’s construction of solutions based on asymptotic complexity annotations. Simi-
larly, work in multi-modal synthesis demonstrates the utility of considering evenmore
diverse sources of information than Haze does; Chen et al. [92] achieve state-of-the-art
performance in regular expression synthesis by combining functional specifications
with natural language.

At a high level, the use of additional information beyond a problem’s functional
specification is likely to become more and more relevant as the desired complexity
of program synthesis grows; Haze proposes an initial attempt to do so. Integrating
further concrete sources of information (such as dynamic control flow data [185]) is
likely to lead to further work in specific application contexts.

7.7 Conclusion

This chapter has presented a new program lifting approach using grey-box behaviour,
automatically constructing a program to match the behaviour of an unknown com-
ponent. It generalises across domains, synthesising and lifting more programs than
prior techniques, without any external assistance. The grey-box synthesis methodol-
ogy is validates using bounded model checking, demonstrating that the synthesised
programs are correct.
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Conclusions

This thesis was motivated by the problem of rejuvenating legacy software to take
better advantage of newly available hardware and software components (e.g. new
heterogeneous devices or software libraries). Doing so by hand is possible, but projects
are often hamstrung by limited development resources. If an automated solution were
possible, then legacy software could bemodernised and rejuvenatedwithout requiring
up-front developer effort. To enable an automated approach, a formal model of the
behaviour of software components would be necessary. The solution proposed in
this thesis was to synthesise programs matching the behaviour of components, so
that compatible regions of application code could be automatically refactored to take
advantage of them. Chapter 1 sets out the motivating scenario in more detail.

Then, in Chapter 3, the background material for this thesis was presented. The
technical components of the work carried out builds on existing tools: the LLVM
compiler intermediate representation [8], and theCAnDLdomain-specific language for
constraint-based search over LLVMprograms [12]. For both of these tools, an overview
of their key features and uses was given. Then, an overview of a minimal, free-form
language for program sketching was presented, and the connections between LLVM,
CAnDL and sketching program synthesis were explained. Chapter 2 summarised and
reviewed important contributions from the literature relevant to this thesis.

Next, Chapters 4 to 7 described the implementation and evaluation of three distinct
approaches to program synthesis. Annote used contextual information known by
users of a library to direct the search for potential program sketches, while Presyn
trained aprobabilisticmodel as amore general approach to the sameproblem. Presyn’s
synthesis is used to drive an automated refactoring tool in Chapter 6. Finally, Haze
usednon-correctness specification (“grey-box information”) to implement an improved
synthesis procedure.

Finally, this chapter concludes the work in this thesis, and is structured as follows:

175
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Section 8.1 lists the technical and abstract contributions made in the course of carrying
out the research in this thesis. Then, Section 8.2 considers the potential threats to
validity for this thesis, and how they could be addressed. Finally, Section 8.3 proposes
interesting future directions for research.

8.1 Contributions

This section gives a brief overview of the most important technical and experimental
results produced in the course of this thesis. They are as follows:

8.1.1 Approaches to Synthesis

The key contributions of this thesis are the three proposed approaches to synthesis:
Annote, Presyn and Haze. While they share a common objective (learning executable
models of software components), each examines a different source of information to
inform their search for candidate programs. Being able tomodel and understandwhat
information and assistance is available for a synthesis problem is a key step towards
general synthesis for existing components.

Annote examines the use of information that is known only informally about a
problem, by encoding that information as part of a type signature. Presyn uses a
dataset of known functions or synthesised solutions to train probabilistic models of
program structure, so that subsequent programs can be synthesisedmore easily. Haze
examines how non-correctness specifications can reduce the size of a synthesis search
space. Together these three approaches comprehensively examine the information that
may be available when synthesising a model for an existing software component, and
demonstrate its practical application to synthesis.

8.1.2 Synthesis Framework

To evaluate these approaches, a substantial shared implementation framework was
created, covering both practical and theoretical concerns. In order to integrate with
the CAnDL language’s tooling, LLVM IR was chosen as their shared target language.
Synthesising LLVM IR required the implementation of several tools and libraries,
including a language extension supporting symbolic holes.

More abstractly, a domain-specific language for specifying and manipulating gen-
eral program sketches was designed. This language allows synthesisers to specify
their own arbitrary sketch fragments, while providing a common set of tools for ma-
nipulating, compiling and testing sketches composed of these fragments.
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8.1.3 Grey-Box Synthesis

Haze (in Chapter 7) proposes the idea of grey-box synthesis, where non-correctness
specifications derived from observations of a component’s behaviour are used to drive
synthesis. This technique is a novel one within the areas of oracle-driven and mul-
timodal synthesis: often, oracle-driven techniques are stated abstractly, rather than
considering observations of a real device. Similarly, multimodal synthesis is often
restricted to limited domains such as natural-language specification. Combining these
approaches in practice is a useful contribution.

8.1.4 Evaluation of Synthesisers

Thedifficulty in comparing inductive synthesisers against oneanother iswell-established
in the literature [46, 47]. To address this difficulty, at least partially, this thesis proposed
a common set of synthesis problems stated as reference C implementations, together
with mechanisms to prepare problem inputs for several common synthesisers from
the same reference implementation.

Providing shared inputs for different synthesisers is only one part of establishing
a fair comparison between them. As well as those tools, this thesis gives a detailed
evaluation of the assistance and inputs given to each synthesiser to evaluate why they
may or may not succeed on a particular problem. Together, the set of benchmarks and
qualitative comparison methodology are a substantial contribution.

8.1.5 Semantic API Migration Tool

Finally, this thesis proposes a set of tools for performing API migration on LLVM IR
problems. Regions of code described by a CAnDL search result can be extracted and
replaced by a call to a library function. Doing so safely, in a way that considers the
local context of the original code is difficult.

8.2 Critical Evaluation

This section considers the most important threats to the validity of the research in this
thesis. Their impact on the results as presented and an assessment of how they are
accounted for in this thesis are given.

8.2.1 Difficulty of Benchmarking

As stated above, comparing different synthesisers against one another is an extremely
challenging problem. Every implementation targets a different language, using a
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different set of search procedures and atomic components. As a result, providing fair
comparisons between their respective performances is difficult.

This problem is addressed in this thesis in two ways. First, through the construc-
tion of a common set of reference problems that can be converted automatically into
idiomatic specifications for different synthesisers (e.g. by restating array problems as
lists for functional implementations). Secondly, by testing synthesiser implementa-
tions under multiple scenarios; one where input similar to their original evaluation is
supplied, and one more similar to the inputs given to the synthesiser from this thesis.
By doing so, the effect of context and implicit assumptions can be measured.

8.2.2 Cost of Synthesis

Because the synthesisers described in this thesis are intended for use in practical
workflows (i.e. by compiler developers as a mechanism for creating novel, high-level
optimisations, or byapplicationdevelopers in the course ofmaintaining their software),
the time taken to synthesise eachnewprogram is an important consideration. However,
none of the synthesisers implemented in this thesis make synthesis time an explicit
design goal.

Broadly, across all three synthesisers, the time taken to synthesise a given library
function is in line with their expected usage (as one-off tools not invoked during every
compilation of an application). Some successful syntheses take up to several hours
to complete. Many potential techniques exist to accelerate and optimise synthesis
processes of this kind. For example, hill-climbing [72] can be used to more effectively
direct the instantiation of symbolic holes. Alternatively, as the quality of formalmodels
for LLVM IR continue to improve [186], the application of a CEGIS loop becomes a
more viable implementation choice.

CAnDL search and code replacementmust be performed during every compilation
of an application, however. The impact of these phases on compilation time was found
by the original authors to typically be within a factor of 2–3× [12, 112]. Optimising this
part of the compilation and migration process is outwith the scope of this thesis.

8.2.3 Generalisation and Bias

For any synthesiser, the choice of program components, search procedure and evalu-
ation dataset represent natural sources of bias. In this thesis, while manually-curated
components of each synthesiser’s implementation are present, where possible they are
selected in such a way as to minimise bias. In cases where bias remains, it is noted
explicitly.
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The most significant implicit bias present in the three synthesisers implemented
is the type of library function targeted (i.e. evaluation cases not derived from existing
synthesis benchmarks). In each case, these programs are regular, data-processing
functions likely to present a performance bottleneck (where a regular function is one
that performs a similar operation across its input range, and does not exhibit significant
divergence on a sparse subset of that range). Decisionsmade in the “meta” design level
of each synthesiser rely on this assumption (for example, Haze assumes that programs
access many memory locations to produce traces).

This bias arises naturally from the problem statement in Chapter 1: to rejuve-
nate and optimise applications by taking better advantage of newly available libraries
and components. Doing so requires that performance-sensitive cases be examined.
Additionally, synthesising the entire surface area of a given library is an intractable
problem without further constraints. In summary, the implicit assumptions made in
the course of this thesis are necessary for problem tractability, and arise naturally from
the motivating scenario.

8.2.4 Performance

The analysis of potential performance gains through porting applications to new li-
braries in Chapter 4 is limited to 3 different platforms and libraries. A more detailed
evaluation of which components and optimisation choices are likely to benefit each ap-
plication (perhaps leading to a predictive performancemodel) is necessary to conclude
in general that performance can be improved without hand-coded optimisation. Gins-
bach et al. [23] demonstrate a technique by which memory transfers between the CPU
and GPU can be made lazily, reducing the downside risk of porting an application.

8.2.5 Input Generation

Being able to generate valid, “interesting” inputs for an arbitrary black-box oracle (or
even a known C program [150]) is an unsolved problem in the general case. This
means that inputs to oracle components and synthesised functions must be generated
according to predefined heuristics; if a component exhibits behaviour outwith the
scope of these heuristics, then that behaviour will never be captured by synthesis.

Using branch coverage, M3 (Chapter 6) experimentally validates that randomly-
generated input examples adequately cover the behaviour of the reference programs in
its evaluation dataset. Similarly, the performancemodels used byHaze are validated to
ensure that its input generation strategies are adequate. In the context of the programs
synthesised in this thesis, heuristic input generation strategies are valid; however, as
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synthesis scales to more complex, general components it is likely that improvements
to input generation will be necessary.

8.3 Future Work

8.3.1 Neural Synthesis

Increasingly, neural program synthesis is becoming a viable tool for learning complex
programs. Combining their ability to derive patterns from large datasets and integrate
multiplemodalities of informationwith newdevelopments in representation structure
(e.g. graph neural networks) has yielded significant new results in synthesis. Applying
neural methods to parts of the workflows suggested in this thesis (e.g. prediction of
structure in Presyn, or more complex tasks such as instruction sequence generation)
may yield improved results given appropriate training data.

8.3.2 Lifting

The work in this thesis focuses on the refactoring and rejuvenation of low-level user
code (i.e. the LLVM IR generated from original source code). This suits the synthesis
and code search tools used in this thesis, but does not generalise to more abstract
representations of code. Future work could examine the combination of lifting with
synthesis of library functions: if a program could be lifted to a higher-level represen-
tation, and synthesis performed at that level, it may be possible to improve the success
of refactoring and migration techniques.

Additionally, combining black- and grey-box synthesis with “white-box” lifting in
the spirit of Helium [96] (and other domain-specific lifters) would be an appropri-
ate development of this thesis: by allowing tools to take advantage of all available
information, more general results could be obtained.

8.3.3 Higher-Order Learning

New hardware devices are frequently programmable to some degree; their behaviours
are expressed in terms of state machines, and may be configurable in some way. The
synthesis techniques in this thesis scale to straightforward “computational” devices
and libraries, but do not currently scale to stateful or programmable interfaces. Gener-
alising existing synthesis and refactoring tools to support programmability would be
a difficult, but substantial expansion of the ideas in this thesis.
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8.3.4 Tool Support

This thesis proposes a number of tools for themanipulation of LLVM IR, in particular in
relation to symbolic holes (for example, the rauw-nt primitive operation). Integrating
these contributions with existing higher-level languages to build solver-aided tools
that take advantage of existing compiler pipelines and mechanisms is an interesting
future direction.

8.3.5 Input Generation

As described above, the generation of viable input examples for a component oracle
or synthesised program is likely to become a bottleneck as their complexity scales
in the future. Being able to synthesise interesting input examples without access to
component implementation details is therefore a useful future task.

One possible direction for this work is related to the idea of grey-box synthesis:
instead of making use of a verification tool to construct inputs, observations of grey-
box behaviour are used to learn what structure of input examples is likely to produce
new behaviour in a component. A co-operative loop between input generation and
behavioural observation could therefore be implemented.

8.4 Summary

This chapter summarised the general structure of this thesis, giving a brief summary of
each chapter. The key technical and theoretical contributions were summarised, along
with a critical evaluation of the primary threats to validity for the research carried out.
Finally, an overview of interesting future directions is given.
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