
Statically Checked Assertions for
TESLA

Bruce Collie

Part III Computer Science
Trinity Hall

June 27, 2017

A dissertation submitted to the University of Cambridge in partial fulfilment of the
requirements for Part III of the Computer Science Tripos

Declaration

I, Bruce Collie of Trinity Hall, being a candidate for the Part III in Computer Science,
hereby declare that this report and the work described in it are my own work, unaided
except as may be specified below, and that the report does not contain material that
has already been used to any substantial extent for a comparable purpose.

Total word count: 11,993

Signed:

Date:

Abstract

TESLA [2] is a compiler-based tool that allows temporal run-time assertions to be
written about C programs, expressing richer safety properties than traditional tools
can. However, adding temporal assertions to a program incurs a significant runtime
performance overhead. As a result, the usefulness of TESLA is limited to debugging
scenarios where this overhead is acceptable.

I formalise the assertion language used by TESLA, then use the formalism to de-
velop a model checker (TMC) for a subset of its assertions, demonstrating its useful-
ness by applying it to a TESLA-instrumented implementation of mutual exclusion
locks. I analyse the usefulness of TESLA with respect to a large, widely-used open
source library, finding that common source-code idioms inhibit the useful application
of TESLA. Based on these results, I improve on previous work by describing a general
method for applying TESLA to library interfaces, then apply the method successfully
to an existing server application. To evaluate TMC, I analyse the performance over-
head of TESLA instrumentation in this server, finding a 40% overhead for as few as
five assertions. Applying TMC to prove these assertions at compile time eliminates the
run-time overhead completely while retaining the asserted safety properties.

Contents

1 Introduction 1

2 Background 3
2.1 Temporal Assertions . 3
2.2 Summary of Existing Work . 3
2.3 Programming with TESLA . 5

2.3.1 Terminology . 5
2.3.2 Build Process . 5
2.3.3 Writing Assertions . 6
2.3.4 The TESLA Assertion Language 7

2.4 LLVM . 7

3 Related Work 9
3.1 Program Verification . 9

3.1.1 Bounded Model Checking . 9
3.1.2 Other Approaches . 10

3.2 SMT . 11
3.2.1 Background . 11
3.2.2 Related Work . 12

4 Static Analysis 15
4.1 Modelling Locks with TESLA . 15

4.1.1 Lock Implementation . 15
4.1.2 TESLA Assertions . 17
4.1.3 Performance Overhead . 17

4.2 Formalising TESLA Assertions . 18
4.2.1 Program Events . 19
4.2.2 Composition . 20

4.3 TMC: a TESLA Model Checker . 22
4.3.1 Data-flow Inference . 22
4.3.2 Model Checking Algorithm . 24
4.3.3 Results . 27

i

CONTENTS

5 Applications 29
5.1 LWIP . 29

5.1.1 Structure . 29
5.1.2 Investigation . 30
5.1.3 Summary . 32

5.2 Safer Library Interfaces with TESLA . 32
5.2.1 Motivation . 33
5.2.2 Implementation Strategy . 33
5.2.3 Summary . 34

6 Evaluation 37
6.1 Static Analysis of Assertions . 37

6.1.1 Contributions . 37
6.1.2 Regression Testing with TMC . 37
6.1.3 Performance . 38
6.1.4 Correctness . 39
6.1.5 Future Work . 39

6.2 Application to Real-World Code . 40
6.2.1 Contributions . 40
6.2.2 Performance . 40

6.3 Usability . 45

7 Conclusion 47

ii

1 | Introduction

The tools available for programmers to assert the correctness of their code are almost
always instantaneous—assertions can be made about the current state of the program,
but not about previous or future states. As a result, temporal properties of programs are
often checked informally using manual instrumentation, or not at all.

TESLA [2] provides C-language systems programmers with a way of mechanically
checking temporal properties of their code by using an augmented compilation pro-
ces. This approach proved successful—a number of bugs in open-source libraries were
identified and fixed with the help of temporal assertions. However, using TESLA im-
poses significant run-time performance overhead on a program (up to 7× on some
workloads). As a result, TESLA has only been useful as a debugging tool in research
contexts.

In this dissertation I propose the use of static analysis for optimisation of TESLA
assertions—if an assertion can be proved correct at compile time, then its instrumen-
tation code can be omitted from the program. The program is likely to be smaller and
faster than if the instrumentation were included, and potential counterexamples to as-
sertions can be used by the programmer as a useful debugging tool in their own right.

To demonstrate the utility of static analysis, I provide an implementation of TESLA-
instrumented mutual exclusion locks along with benchmarks that show performance
overhead of more than 10% for a single assertion. I then contribute a translation of
TESLA assertions to finite state automata that formalises components of the original
work, and use this translation to implement a model checker for a subset of TESLA
assertions: TMC (TESLA Model Checker).

I investigate how TESLA can be applied to the internal implementation of TCP in
LWIP [19], a widely-used library implementing a complete, portable IP protocol stack.
Then, motivated by the difficulties encountered during this process, I describe a gen-
eral framework for using TESLA to instrument library interface code. This represents
a more general approach to using TESLA than earlier work.

To evaluate, I apply this technique to an existing application written using LWIP,
adding TESLA assertions to validate its usage of TCP protocol code. Architectural and
microarchitectural benchmarks show performance overhead of up to 40% from five
TESLA assertions. This overhead can be completely eliminated by TMC, demonstrat-
ing that it is a valuable contribution towards greater applicability of TESLA.

1

INTRODUCTION

2

2 | Background

In this chapter I give a summary of previous work related to TESLA on which this
project builds, a short overview of the practical issues associated with using TESLA
and an introduction to the TESLA assertion language. I also provide a guide to TESLA-
specific terminology.

2.1 Temporal Assertions

Before describing TESLA in detail, it is worth giving a motivating example of why it is
useful. A simple explanation is that it allows the programmer to make assertions about
events that occur in the past and future, rather than just about the current program
state.

Figure 2.1 shows C functions for acquiring and releasing a mutual exclusion lock.1

For a program to make progress, it should eventually release the lock after it has been
acquired. However, within lock_acquire, there is no way of asserting this property
using standard C constructs—the call that releases the lock could be logically separated
from the call that acquires it (for example, a library function could acquire the lock then
depend on user code releasing it).

TESLA allows for temporal properties to be expressed. Figure 2.2 shows the same
lock acquisition function, but with a TESLA assertion enforcing the safety property.
The property is defined along with the function it applies to, and is independent of
where calls to lock_acquire and lock_release are made. The remainder of this chap-
ter describes TESLA assertions and the associated tooling in detail.

2.2 Summary of Existing Work

TESLA is a description, analysis, and validation tool that allows systems
programmers to describe expected temporal behaviour in low-level lan-
guages such as C. [2, p. 1]

1Modulo a suitable type struct lock_t and a correct implementation of atomic compare-and-swap
(CAS).

3

BACKGROUND

void lock_acquire(struct lock_t *lock) {
return CAS(&lock->locked, false, true);

}

void lock_release(struct lock_t *lock) {
lock->locked = false;

}

Figure 2.1: Lock operations without progress property enforced

void lock_acquire(struct lock_t *lock) {
TESLA_WITHIN(main, eventually(

lock_release(lock)
));
return CAS(&lock->locked, false, true);

}

void lock_release(struct lock_t *lock) {
TESLA_WITHIN(main, previously(

lock_acquire(lock) == 1;
));
lock->locked = false;

}

Figure 2.2: Lock operations with progress property enforced using TESLA

Anderson et al. [2] introduce TESLA as a tool for validating safety2 properties of
systems code. These properties are written inline with the program they describe, and
are checked at run time by instrumentation code added during an extra compilation
phase.

The authors detail their experiences using TESLA to perform complex debugging
on large, well-known systems software. Their efforts were successful—the discovery
of a known security vulnerability in OpenSSL was reproduced using TESLA, and an
elusive bug in the GNUStep graphics library was diagnosed and fixed. Additionally,
they detail the overhead associated with using TESLA (at compile and run time) and
identify static analysis as a possible future direction of research.

At the time I began work on this project, TESLA comprised a parser for assertions
written in C programs, a compiler-based instrumentation tool, and a runtime library
(libtesla). The primary contribution of my work is a model checker for TESLA asser-
tions (TMC). Figure 2.3 shows how these components interact with each other. Existing

2A safety property asserts that “bad things” do not happen during the execution of a program, while
a liveness property asserts that “good things” do eventually happen [1, 26].

4

BACKGROUND

Analysersource code

Compilersource code

Instrumenter
assertions

LLVM IR

TMC

property
checks

Compiler

instrumented
LLVM IR

libtesla

shared
library

program

Figure 2.3: TESLA system components

components are highlighted in blue, and my contribution in green. As well as TMC,
I have contributed several bug fixes and improvements to the existing TESLA compo-
nents.

2.3 Programming with TESLA

In this section I give a brief overview of how TESLA is used in practice to instrument
programs.

2.3.1 Terminology

Today, programmers may add assertions to their code to ensure its correctness—these
are logical statements predicated on data in the current scope. TESLA assertions ex-
press temporal relations between program events. Such assertions require a bounding
interval—a pair of start and end events that limit the scope of the assertion. In Fig-
ure 2.2, the bounding interval is from each call to main to the corresponding return.

Each TESLA assertion defines an automaton, and a collection of these automata is
referred to as a manifest when serialised to disk. An assertion site is the source location
where an assertion was originally written, and a function event is a call to or return from
a function.

2.3.2 Build Process

Using TESLA to instrument a program requires that its build process is modified to
produce TESLA-specific intermediate products. Figure 2.4 shows the traditional com-
pilation model for C programs; Figure 2.5 shows the additional steps required by
TESLA.

A .bc file contains LLVM intermediate code, and a .tesla file contains a binary or
textual representation of the TESLA assertion manifest.

5

BACKGROUND

.c .o
cc

executable
ld

Figure 2.4: The traditional C compilation model

.c
with TESLA

assertions

.bc

.tesla

cc

tesla
analyse

.manifest

.bc
llvm-link

tesla
cat

.instr.bc

tesla
instrument

tesla
instrument

executable
cc

Figure 2.5: The C compilation model with TESLA

The TESLA toolchain is used together with the Clang / LLVM compiler infrastruc-
ture to generate these intermediate artifacts. A brief summary of the individual TESLA
tools used is:

analyze parses TESLA assertions from a C source file and outputs them to a .tesla
manifest file.

instrument adds instrumentation code to a program in LLVM IR format based on the
data in a TESLA manifest file.

cat combines several TESLA assertion manifests together, checking for consistency
and eliminating redundant definitions.

These tools can be easily integrated with an automatic build system. An issue spe-
cific to TESLA is that assertions written in one compilation unit can affect instrumen-
tation code in all other compilation units. This means that changing one source file
can cause the entire project to be reinstrumented, increasing build times; incremental
builds are worst affected by this issue.

2.3.3 Writing Assertions
TESLA assertions are written using a set of preprocessor macros that expand to calls to
stand-in functions. These functions have no definition, and are only used as a way to
store information in the IR. Calls to them are removed by the instrumenter.

An example of the TESLA macros being written inline with a program is given in
Figure 2.6.

6

BACKGROUND

int main(void)
{

TESLA_WITHIN(main,
eventually(

call(some_function(ANY(ptr))),
other_function(ANY(int)) == 0

)
);

int x;
some_function(&x);

return other_function(x);
}

Figure 2.6: Example of TESLA macros being used to write an assertion

automaton(name_of_auto, struct arg_type *s) {
some_function(s) == 0;
call(function1) || call(function2);
s->field = 4;
tesla_done;

}

Figure 2.7: Example of an explicit TESLA automaton

2.3.4 The TESLA Assertion Language
Assertions specify temporal relations between program events as defined in subsec-
tion 2.3.1 (function calls, assertion sites etc.).

The basic relationship expressible in the assertion language is sequencing—an as-
sertion that events occur in a particular order. Disjunction of assertions is also express-
ible. Assertions must include a reference to an assertion site event—this reference is
implicit in Figure 2.6 through the eventually macro, which states that the sequence of
events named takes place after the assertion site.

Automata can be written explicitly, allowing for composition and code reuse. Fig-
ure 2.7 shows an example of this style.

2.4 LLVM

In this section I give a brief overview of LLVM [27], the compiler framework used to
implement the TESLA toolchain.

7

BACKGROUND

declare void @bar(i32)

define i32 @foo(i32 %x) {
entry:

%mul = mul i32 %x, 3
%cmp = icmp sgt i32 %mul, 100
br i1 %cmp, label %if.then, label %if.else

if.then:
call void @bar(i32 %mul)
ret i32 0

if.else:
ret i32 %mul

}

Figure 2.8: Example of textual LLVM IR code

The primary attraction of implementing a compiler-based tool using LLVM is its
intermediate representation, which can be easily manipulated in-memory using a C++
API or manipulated as human-readable text in an assembly-like format. LLVM IR is
“a Static Single Assignment (SSA) based representation that provides type safety, low-
level operations [and] flexibility” [29].

Figure 2.8 gives an example of textual IR that illustrates some of the important
features of LLVM:

Functions LLVM IR can represent functions that are conceptually similar to C func-
tions, though with basic blocks and jumps rather than loops and conditional
statements. Similarly to C, functions can be declared but not defined.

Values A key design decision taken by LLVM is that instructions produce named SSA
values. When manipulating LLVM IR programatically, an instruction is synony-
mous with the value it produces. In textual IR, values are identified by % or @
preceding their name (for local and global values respectively).

Types LLVM IR retains type information from its source program—all values are
typed, and casts between types must be made explicitly using intrinsic instruc-
tions.

The TESLA instrumenter is implemented using the in-memory LLVM IR manipu-
lation libraries. It replaces known instrumentation sites in the IR with instrumentation
code, yielding code that can be compiled to an executable.

8

3 | Related Work

In this chapter I provide an overview of how TMC contributes new ideas and develop-
ments compared to previous work, with particular emphasis on the areas of bounded
model checking and SMT methods.

3.1 Program Verification

In this section I give a summary of important work in the area of program analysis and
verification that has influenced my development of TMC.

3.1.1 Bounded Model Checking

Biere et al. [7] introduce the concept of bounded model checking, building on the ear-
lier idea of symbolic model checking due to McMillan [31]. In this section I give a
summary of previous work in the area, with particular emphasis on where it has been
applied to check C programs. I also note key differences between these previous works
and TMC—the style of assertion supported, and the use of non-symbolic checking.

Key to model checking is the idea of counterexample generation—if a state satisfies
the negation of a formula, then that state is a counterexample for the original formula.
Bounded model checking extends this idea by searching for counterexamples with an
upper bound on their allowable size. This means that counterexamples are discovered
faster and are minimally sized.

While the implementation strategies and analysis goals of BMC [7] (the first prac-
tical bounded model checker) and TMC are different (BMC is a symbolic model
checker for an explicit state description language; TMC is non-symbolic and checks
TESLA assertions in C programs), the strategy of searching for counterexamples us-
ing an iterative-deepening method is derived from the original work on bounded
model checking. Another difference between TMC and BMC is their approaches to
soundness—BMC aimed to be provably sound, while TMC aims for soundiness [28]
(see subsection 6.1.4).

CBMC

Clarke, Kroening, and Yorav’s CBMC [13] applied bounded model checking to C pro-
grams by translating them into instances of the SAT decision problem. CBMC allowed

9

RELATED WORK

for C programs to be written as executable specifications for Verilog hardware designs
without prohibiting the use of any C language constructs.

Although CBMC is an example of model checking being applied to C programs,
the assertions that can be checked are not temporal. The goal of TESLA assertions is
different to that of CBMC—TESLA assertions are written to verify the behaviour of
a program, while CBMC uses a C program with assertions to verify that a hardware
implementation is behaviourally equivalent to that program.

LLBMC

CBMC operates at the level of C source code using syntactic transformations. Merz,
Falke, and Sinz [32] identify this as a potential avenue for improvement—they con-
tribute LLBMC, a bounded model checker that operates on LLVM [27] IR. The benefits
of this approach include broader language support, assistance from compiler optimi-
sations for code simplification, and an improved memory model. Empirically, LLBMC
represents an improvement over previous work it is compared to. The use of LLVM IR
to simplify model checking is applied in TESLA and TMC.

Context-bounded LTL Checking

Recent work by Morse et al. [33, 34] uses bounded model checking to check LTL as-
sertions against C programs. Their approach translates an LTL formula into a Büchi
automaton, which is then itself translated to C code and woven into the program to be
checked.

This approach is similar to TESLA instrumentation, with some key differences. The
automaton code here has its own thread of execution rather than being inserted in-
line, and instead of producing a modified executable that exhibits runtime failures on
assertion violations, the combined program is checked statically using ESMBC [16].

Although the development of this work was partly contemporaneous with initial
work on TESLA, and the implementation strategies similar in some respects, the ex-
pressivity of this system is more similar to CBMC than to TESLA.

3.1.2 Other Approaches
While there has been a great deal of work derived from BMC on verifying systems
software, there are also other approaches that do not share the same lineage.

Bessey et al. [6] describe the lessons learned when commercialising their static anal-
ysis research—many of these lessons are applicable to static analysis tools in general,
particularly with regard to the perceived usability of a tool and how it is used in a non-
research environment.

MOPS

Anderson et al. [2] identify MOPS [10] as being similar to TESLA in concept. The
primary goal of MOPS is to discover potential vulnerabilities of C programs operating

10

RELATED WORK

in a Unix environment (where security properties may have whole papers dedicated
to explaining their subtleties, as is the case with setuid [11]). The authors used MOPS
to discover a number of vulnerabilities in well-known open-source software.

Properties in MOPS are expressed as finite state automata, with accepting states
representing an execution on which an unsafe event has occurred. The expression of
TESLA assertions is similar in concept to this, but with extensions to check function
arguments and return values. MOPS assertions express slightly different properties
to TESLA assertions (and vice versa). MOPS can assert properties such as “a call to
f is immediately followed by a call to g”, while TESLA can assert that “if execution
reaches this program point, f was previously called”. Broadly, however, the concepts
are similar.

The primary advantage of TMC compared to MOPS is the inclusion of assertion
site events for considering control flow only on certain paths, and the ability to check
a subset of the program’s data flow.

KLEE

KLEE [9] is a system for symbolic execution of programs in order to automatically
generate tests or prove assertions. It differs from other approaches described here as it
does not perform model checking—instead, it generates constraints that must hold for
a program point to be reachable, then solves the constraints to generate test inputs to
the program.

The primary motivation for this implementation style is to increase the source-level
coverage of a program’s test suite. This means exploring every possible execution
path, an approach that TESLA sought explicitly to avoid (by using automata bounds
and assertion site events). However, some of the ideas present in KLEE are relevant
to TMC—like the return value inference algorithm I describe in subsection 4.3.1, KLEE
uses an SMT translation of LLVM IR to solve constraint systems.

3.2 SMT

In this section I give a brief overview of the theory of SMT methods, as well as a sum-
mary of important work related to program analysis using SMT methods.

3.2.1 Background
The study of satisfiability modulo theories (SMT) is founded in boolean satisfiabil-
ity. The decision problem SAT was the first to be proven to be NP-complete [15]—its
statement can be given concisely as “Does there exist a consistent assignment of truth
values to the variables in a boolean formula such that the formula is satisfied?”. SAT
exhibits the useful property of self-reducibility, meaning that any algorithm that solves
the decision problem can be used to find a satisfying assigment.

11

RELATED WORK

Many problems can be easily reduced to SAT (formally, any problem in NP can be
reduced to SAT in polynomial time, and informally, its structure makes it a good choice
for encoding some domain-specific problems). However, many other problems are
stated with respect to a background theory such as integer arithmetic or finite arrays.
The key idea of SMT problems is to allow for a background theory to be combined with
a satisfiability problem.

Biere et al. [8, ch. 12] provide a formal definition of SMT problems, as well as several
commonly-used background theories. For the purposes of this report, only a basic
definition is required.

Terminology

A background theory is a collection of axioms that allow for interpretation of the symbols
in a formula. For example, the background theory of integer arithmetic provides the
standard interpretations of symbols such as +,−,×, 0 etc. A different background
theory such as that of finite bit-vectors may interpret these symbols differently (for
example, + could be defined to wrap on overflow). Background theories are used
because it is often either tedious or impossible to encode these axioms in propositional
logic for a SAT solver.

Uninterpreted functions are the building blocks of SMT instances. No meaning is as-
sociated with these functions when an SMT problem is specified, only that they have a
particular sort1. An SMT solver may assign interpretations (definitions) to these func-
tions in order to satisfy the instance constraints.

Tools and Standards

A great deal of research and engineering work is invested in the use of SMT tools.
Two of the most commonly used solver implementations are Z3 [18] and CVC4 [5],
but there are numerous others with individual strengths and weaknesses. There exist
standards such as SMT-LIB [3] that specify textual input and output formats for SMT
solvers. Standardisation in this way allows for competitive benchmarking of solver
performance (the primary venue for this is SMT-COMP [14]).

3.2.2 Related Work
SMT solvers are a low-level tool—using them to solve a domain-specific problem in-
volves translating the problem into a formulae in a particular theory. Because of this
flexibility, SMT solvers have been used to solve a large number of different problems.
For example, Microsoft list 58 publications related to Z3 [36] that span areas as diverse
as cloud computing, real-time systems, and functional programming. Broadly, most
applications of SMT methods involve some form of program analysis.

1Informally, sorts can be understood as “types” in a particular problem. Examples are the sorts of
integers, booleans, and functions with particular domain and range.

12

RELATED WORK

Dahlweid et al. [17] provide VCC, a tool for proving partial correctness of C pro-
grams using annotations that describe invariants on data structures. These annotations
are converted to an intermediate representation, then to an SMT problem to be verified.
The annotations supported by VCC are somewhat different to TESLA assertions—they
specify invariant rather than temporal properties. VCC was used successfully to verify
the implementation of the Microsoft Hyper-V kernel.

PAGAI [21] uses SMT solvers to implement analyses based on abstract interpreta-
tion. For example, it can be used to discover invariants that hold at points in the con-
trol flow graphs, and to prove properties based on assertion reachability. The methods
used in PAGAI to map LLVM IR onto an SMT problem are more sophisticated that
those I describe in subsection 4.3.1—for example, PAGAI implements an arithmetic
simplification method based on parallel assignments that allows for stronger invari-
ants to be proved.

13

RELATED WORK

14

4 | Static Analysis

In this chapter I present the design and implementation of static analysis mechanisms
for TESLA. First, I motivate this work by implementing a mutual exclusion lock instru-
mented with TESLA and demonstrating that performance improvements are possible
by removing TESLA instrumentation code. I then fully describe TESLA assertions as
finite-state automata. From this description, I implement TMC, a model checker for
TESLA assertions.

4.1 Modelling Locks with TESLA

TESLA exposes run-time behaviour using program instrumentation, illu-
minating coverage of complex state machines and detecting violations of
specifications. [2, p. 1]

Anderson et al. [2] draw attention to the suitability of TESLA for modelling and
verifying state machines within a program. A simple state machine used in many pro-
grams is the mutual exclusion lock—in this section, I develop TESLA assertions for
the usage of these locks and show the possible benefit of static analysis with respect to
runtime performance. Figure 4.1 shows the state machine for a spin-lock implemented
using a mutex with non-blocking acquire and release operations.

While the number of states and operations associated with this state machine is
small, asserting correct usage involves temporal properties over both control- and
data-flow. It will therefore be a useful running example throughout the rest of this
chapter.

4.1.1 Lock Implementation

A possible implementation of a mutual exclusion lock using the C11 atomics library
is given in Figure 4.2. The only operations permitted by the lock are non-blocking
acquisition1 and release. Using an atomic member variable with a compare-and-swap
function ensures thread-safety.

Figure 4.3 gives a possible implementation of a spin-lock as shown in Figure 4.1.
Correct usage of such a lock can be summarised informally by a set of invariants:

1Returns immediately with true if the lock was acquired, and false if it was not.

15

STATIC ANALYSIS

U L

E

lock acquired

lock released

lock busy

*

*

*

Figure 4.1: State diagram for a mutual exclusion spin-lock, with states unlocked (U),
locked (L) and error (E).

struct lock_t {
_Atomic(bool) locked

};

void lock_init(struct lock_t *lock) {
atomic_init(&(lock->locked), false);

}

bool lock_acquire(struct lock_t *lock) {
bool f = false;
return atomic_compare_exchange_strong(

&(lock->locked), &f, true);
}

void lock_release(struct lock_t *lock) {
lock->locked = false;

}

Figure 4.2: Implementation of a mutual exclusion lock with C11 atomics

void lock_spin(struct lock_t *lock) {
while(!lock_acquire(lock)) {}

}

Figure 4.3: Implementation of a spin-lock using non-blocking acquire

16

STATIC ANALYSIS

automaton(acq_rel, lock_t *lock) {
acquire(lock);
release(lock);
tesla_done;

}

automaton(acquire, lock_t *lock) {
ATLEAST(0, lock_acquire(lock) == false);
lock_acquire(lock) == true;
tesla_done;

}

automaton(release, lock_t *lock) {
returnfrom(lock_release(lock));
tesla_done;

}

Figure 4.4: Mutex lock properties expressed using TESLA

• Consumers can fail to acquire the lock any number of times

• Once the lock is acquired, no more attempts to acquire can be made

• The lock is released exactly once after being successfully acquired

• The lock is not released before it is acquired

4.1.2 TESLA Assertions

The properties described previously are well-suited to being expressed as TESLA
assertions—they express temporal relationships between program events (calls to the
functions lock_acquire and lock_release). Figure 4.4 shows a TESLA expression of
the spin-lock usage properties using explicit TESLA automata.

I implemented a test suite of programs instrumented using these assertions. The
test suite contained both correct and incorrect uses of the lock (with respect to the as-
sertions in Figure 4.4), and was used to check that the invariants described previously
were in fact properly checked by these assertions.

4.1.3 Performance Overhead
The lock assertions can be used to experimentally demonstrate the performance over-
head of using TESLA instrumentation, motivating the removal of safe TESLA assertion
code using static analysis.

17

STATIC ANALYSIS

Experimental Setup

The benchmark code used in this experiment created a number of threads, each of
which attempts to sort a randomly chosen interval of a large shared array in a loop.
Threads accessed the array under mutual exclusion, protected by a lock as described in
Figure 4.2—this created contention on the lock, dependent on the number of executing
threads.

A single TESLA assertion was added to the benchmark to assert the correct usage
of the lock. Two versions of the program were compiled—one with the TESLA instru-
mentation added, and the other without. Both versions were compiled using release
build settings.

Both programs were run with the same parameters (threads sort an interval of size
15,000 from a larger array of size 500,000, and the number of threads was varied from
8 to 40), with results averaged over 5 runs of the program. The benchmarks were run
on a dedicated server (Intel Xeon E5-1620 3.6 GHz, 8 cores, 64GB of RAM) running
FreeBSD 11.

Results

The uninstrumented binary is 25% smaller than the instrumented binary (19.1 KiB vs.
25.3 KiB).

The results from running the two benchmark programs as described above are
shown in Figure 4.5. At low levels of contention there is little difference between the
programs—this is because the TESLA instrumentation code is only executed during
acquisitions and releases of the lock. However, at higher levels of contention more
time is spent in the TESLA instrumentation code (because each call to lock_acquire is
more likely to fail, more calls are made), and the instrumented version becomes slower
relative to the uninstrumented version.

By manually removing assertions that lie on a frequently executed code path, a run
time performance improvement is observed. A decrease in binary size is also observed.
This result motivates the use of static analysis on TESLA-instrumented programs—if
instrumentation code can be removed automatically, then the same performance im-
provements should be attainable.

4.2 Formalising TESLA Assertions

To statically analyse the correctness of TESLA assertions, their semantics must be de-
fined. In particular, we are interested in the “bad things” that cause an assertion to fail
at run time, and how these can be detected at compile time.

TESLA assertions “have a natural expression as finite-state automata that can be
mechanically woven into a program” [2, p. 3]. However, the exact manner in which
these automata are constructed is not given in full in the paper. In this section, I define
the semantics of TESLA assertions by providing the full translation into finite-state
automata. These automata consume strings of program events, accepting a sequence

18

STATIC ANALYSIS

8 16 24 32 40
0

10

20

30

40

50

60

70

No. of Threads

R
un

ti
m

e
(s

)

Effect of contention on benchmark runtime

Uninstrumented
Instrumented

Figure 4.5: Runtime of instrumented and uninstrumented benchmarks at varying lev-
els of lock contention

if it is valid with respect to an assertion, and rejecting it otherwise. A definition of
program events is given below.

The automata constructions given in this section are nondeterministic with ε-
transitions. It is worth noting the well-known result that a non-deterministic automa-
ton with n states can always be converted to an equivalent deterministic automaton
with up to 2n states [37]. However, in practice the automata constructed using the
methods described in this section do not experience an exponential increase in size.

A TESLA-specific issue is that there may be many instances of the same automa-
ton “in-flight” at the same time (for example, if multiple locks are allocated on the
heap and assertions are made of them)—the constructions I describe represent a single
automaton instance.

4.2.1 Program Events
Single program events have no recursive structure (they define only an event category
and associated metadata). As a result, the automata they define are very simple. Fig-

19

STATIC ANALYSIS

q0 q1
e

Figure 4.6: Program event automaton

q0 q0,0 q1,0

q0,1 q1,1 q1

ε

ε

ε

Figure 4.7: Single repetition sequence automaton

ure 4.6 shows the constructed automaton for an arbitrary program event e—it has a
single transition from the initial state to the accepting state, labelled by the event e.

The structure of this automaton is the same no matter what event e it was con-
structed for, and it captures all the metadata associated with e. In section 4.3 I give a
full description of how these properties are used to check properties of a program.

4.2.2 Composition

There are two ways in which TESLA automata may be composed—sequential order-
ing and disjunction. These assertions have recursive structure (i.e. they contain other
assertions), and so their constructed automata are defined as compositions of other
automata.

By convention, sub-automata are shown inside dashed boxes. Accepting states in-
side these boxes are the accepting states of the sub-automaton, and dotted lines indi-
cate transitions that are internal to the sub-automaton.

Sequential Ordering

The primary temporal relationship TESLA can express is sequential ordering. Se-
quence assertions specify an arbitrary list of events that must happen in order, along
with an upper and lower bound on the number of times the sequence may be repeated
(the upper bound may be infinite).

A sequence that occurs exactly once simply links each sub-automaton’s accepting
state to the next’s initial state with an ε-transition. Figure 4.7 shows this construction
for two sub-automata.

From a single repetition, an automaton that can recognise an infinite number is

20

STATIC ANALYSIS

q0 q0,0 q1,0

q0,1 q1,1 q1

ε

ε

ε

ε

Figure 4.8: Infinite repetition sequence automaton

obtained by adding an ε-transition back from the accepting state to the initial state (as
shown in Figure 4.8).

If the upper bound is finite, copies of the entire sequence are chained together to
form the overall automaton. The copies in the accepting range2 have an ε-transition to
the final accepting state. Writing automata with a large but finite number of repetitions
has a direct effect on program size as a consequence of this construction.

Sequential orderings of events must include a reference to an assertion site (the
source location where an assertion is made). The logical property expressed by a se-
quential ordering is then “on an execution path that includes this assertion site, all the
events named in the sequence occur exactly in order”. There is no restriction on where
in the program’s execution the events occur.

Disjunction

TESLA can also express inclusive and exclusive disjunction of sub-automata. Anderson
et al. [2] specify a cross-product based construction for the inclusive case, where a || b
means that either or both of a and b can occur. The exclusive case (a xor b) where only
one of a or b may occur is simpler to construct, and an example is shown in Figure 4.9.

Inclusive-or expresses the property that at least one of the events named occurs, but
that it is not an error for the other events to occur as well. Exclusive-or expresses the
property that exactly one of the named events can occur, and it would be an error for
any of the others to occur as well.

2i.e. those where the number of repetitions is greater than or equal to the lower bound and less than
or equal to the upper bound.

21

STATIC ANALYSIS

q0

q0,0 q1,0

q0,1 q1,1

q1

ε

ε

ε

ε

Figure 4.9: Inclusive-or automaton

4.3 TMC: a TESLA Model Checker

In section 4.2 I gave a translation from TESLA assertions to nondeterministic finite
automata with transitions labeled with program event assertions. These automata act
as specifications for a program. Checking whether a program is correct with regard to
its specifications is a model checking problem in the style of Clarke and Emerson: “[to]
mechanically determine if the system meets a specification expressed in propositional
temporal logic.” [12, p. 2]

In this section I describe the methods used to check a program against its speci-
fications as derived from TESLA assertions. I first describe an SMT-based algorithm
for computing data-flow information for an individual program execution. Using
this analysis together with a form of bounded model checking, I implement a model
checker (TMC) for TESLA assertions. Finally, I discuss the limitations and potential
improvements that could be made to this approach.

4.3.1 Data-flow Inference
TESLA allows for properties of data flow to be asserted—in particular, the value of
arguments passed to functions and the value returned by a function call. Checking
arguments passed to functions can be performed with only minor modifications to
existing TESLA code, and so in this section I describe only the algorithm used to check
function return values.

Stated formally, the property we are interested in checking is “on a particular exe-
cution path, can we infer that a function call returned a fixed value?”. In this section, I
describe an algorithm for performing this inference by translating LLVM functions to
SMT problems.

22

STATIC ANALYSIS

Encoding LLVM IR as SMT Formulae

In section 3.2 I gave an overview of SMT methods, their history and relevant terminol-
ogy. Building on this background, in this section I describe how an LLVM function can
be translated to an SMT problem that can be used to solve the return value inference
problem described above.

A subset of LLVM IR can be easily translated to an SMT formula.3 For example,
the LLVM instruction %3 = add i32 %1, %2 can be seen as a formulae stating that
%3 = %1 + %2, whatever interpretation is given to the values %1 and %2. This en-
coding relies on a particular background theory (for example, the theory of finite bit
vectors) to supply the semantics of + and other operations. All of the LLVM binary
and comparison operators can be translated to interpreted SMT functions using this
method.4

Function calls and loads from memory are translated to uninterpreted functions—
we have no a priori knowledge of the value they will take at run time, but they can be
assigned values in a satisfying model for the problem.

A single execution path through a function is a finite sequence of basic blocks start-
ing at the entry block. The blocks executed in the sequence constrain the values of
branch conditions (the LLVM values on which conditional branches are predicated).
These constraints are then added to the SMT problem as assertions.

Applying this translation to a single execution path yields an SMT problem, the
solution to which produces an assignment of values to LLVM variables. It is possible
that some variables are left unconstrained (if no conditional branches depend on their
value), or that multiple values are satisfying assignments. In order to check whether
a valuation is unique for a given variable, we construct an augmented problem that
contradicts the original model. If this problem is unsatisfiable, the original solution
was unique.

Finally, after translating a function execution and finding a unique model, we are
left with a mapping from call sites to fixed return values (on this execution path). If
a call site has a value in the mapping for an execution path, we know that that value
must be observed on the execution. Otherwise, we assume no knowledge at all of the
value returned at a call site.5

Implementation

The algorithm described above is an intraprocedural one; all the LLVM values in the
SMT translation need to exist in the same function. Implementing it therefore requires
several transformations to be made to a function before it can be translated to an SMT
formula. First, the function must be completely inlined. This is achieved using existing

3At least for the properties relevant to this problem—a full translation of the LLVM semantics would
be more complex.

4Except floating point operations, which are unsupported by TESLA in general.
5This lets us divide call sites cleanly between those we know about, and those we know we don’t

know about.

23

STATIC ANALYSIS

LLVM library code (with the caveat that recursion can only be inlined up to a finite
depth).

When a function is inlined, all calls to it are removed—this means we lose informa-
tion about arguments passed and values returned. This problem is resolved by adding
calls to stub functions before and after each call site to be inlined. Each stub function
receives the same arguments as the call being made, and the return value of the call is
replaced by the return value of the “after” stub. This means that relevant call graph
information is preserved in the inlined function. The inlined function can become very
large for wide assertion bounds (for example, main or a system call).

Execution sequences are generated from the inlined function by walking its control
flow graph to a specified finite depth—this finiteness condition is addressed further
in subsection 4.3.2. Repeated basic blocks from loops in the graph are handled by
simply duplicating the blocks. Figure 4.10 shows a single trace taken from one of the
programs in the mutex test suite from subsection 4.1.2 after these transformations have
been applied.6

Figure 4.10 illustrates the steps performed here—the LLVM basic blocks
%lock_acquire.exit and %do_work.exit are inlined from different functions, and
function calls have been replaced with calls to entry and return stub functions.

The Z3 SMT solver [18] is used to construct and solve the SMT problem correspond-
ing to an execution sequence. Z3 was chosen as a production-quality SMT implemen-
tation with a well-documented C++ API, but the techniques used apply equally well to
any SMT solver implementation. Figure 4.11 shows the SMT translation of the LLVM
IR in Figure 4.10, given in SMT-LIB standard syntax [4].

4.3.2 Model Checking Algorithm

Given the SMT-based mechanism for determining function return values described
above, a model checking algorithm for TESLA assertions can now be defined. This
algorithm is defined in terms of execution traces over an LLVM function (as defined
previously), along with the finite-state automaton translation of an assertion given in
section 4.2.

Execution Traces

TESLA assertions are bounded by beginning and end events. In TMC, for ease of
implementation we consider only assertions bounded by entry and exit to the same
function. Other specifications of a bounding interval are possible, but in practice most
TESLA assertions tend to be bounded by a function in this way.7 Possible executions
are then sequences of basic blocks that begin at the function’s entry block.

TMC generates all possible executions through the inlined bounding function up to
a given length maximum length. On each of these generated executions, we compute

6In this example, __tesla_sink is a basic block added to preserve control flow information.
7The FreeBSD assertions written by Anderson et al. [2] are all bounded by a system call and corre-

sponding return, for example.

24

STATIC ANALYSIS

define i32 @trace_main_5() {
call void (...)* @__tesla_inline_assertion(...)
call void @__entry_stub_do_work()
%2 = call i1 @__entry_stub_lock_acquire(...)
; locking code omitted
br i1 %5, label %__tesla_sink, label %lock_acquire.exit

lock_acquire.exit: ; preds = %6
%7 = call i1 @__return_stub_lock_acquire(...)
%8 = xor i1 %7, true
br i1 %8, label %__tesla_sink, label %do_work.exit

do_work.exit: ; preds = %lock_acquire.exit
call void @__entry_stub_lock_release(...)
call void @__return_stub_lock_release(...)
call void @__return_stub_do_work()
ret i32 0

__tesla_sink: ; preds = %lock_acquire.exit, %1
unreachable

}

Figure 4.10: LLVM IR to be translated into an SMT problem

(declare-fun |%5| () Bool)
(declare-fun |%7| () Bool)
(define-fun |%8| () Bool (xor |%7| true))
(assert (not |%5|))
(assert (not |%8|))

Figure 4.11: SMT translation of LLVM IR

function return values using Z3 as described previously. Then, the execution is checked
for acceptance against the finite-state automaton obtained from the original assertion.

If all possible executions are accepted by the automaton, then the assertion can-
not fail at runtime. Its instrumentation code can therefore be removed safely from the
program. If an execution is not accepted by the automaton, then a counterexample has
been found—we can demonstrate an execution path on which the assertion may not
hold, and the reasons why it may not hold. Figure 4.12 shows a counterexample gen-
erated from one of the mutex test programs (the full DOT output for the finite-state
automaton has been omitted for brevity). All executions are either accepted or not
accepted—there is no “don’t know” outcome.

25

STATIC ANALYSIS

Unexpected event in state s3:
return from lock_acquire (return value == 1)

FSM:
digraph {

...
}

Call stack:
call: lock_init
return: lock_init
call: do_work
call: lock_acquire
return: lock_acquire
call: lock_acquire

Figure 4.12: Counterexample trace generated from a mutex test program

Checking Execution Traces

In this section I describe how an execution trace can be checked against a specification
automaton. I first describe how individual state transitions are checked, and from there
define a notion of acceptance for an entire execution trace.

Each execution trace is a finite sequence of LLVM instructions. For each instruction
in the sequence, the following checks are made:

• Is the instruction a function call? (all checkable program events are expressed as
function calls in the IR—either to entry or return stubs, or to the internal TESLA
assertion site function).

• If it is, is it accepted by any of the edges from the current state?

• If none of the edges accept the function call, does there exist an edge elsewhere
in the automaton that would accept it?

Whether or not an individual edge accepts a program event is defined in terms of
the event’s type and metadata—if the event’s metadata matches the edge’s, then the
event is accepted. For edges that specify a function return value, the check also verifies
that the mapping generated from the SMT problem includes a matching entry.

Assertion failures occur when an event is not accepted by the current state, but
could be by another state in the automaton. Events that are not accepted by any state
are not relevant to the automaton, and so can be ignored.

It is now possible to define when an execution trace is accepted by the specifica-
tion automaton. As noted previously, traces do not have to be complete—they may

26

STATIC ANALYSIS

not reach a terminating block for the function.8 Separate definitions for complete and
incomplete traces must therefore be given.

A complete trace ends in a basic block with no successors, and is accepted if the
state reached after all instructions have been checked is an accepting state. Incomplete
traces are accepted if an accepting state is reachable from the final state reached. In
both cases if an unexpected event occurs, the execution is not accepted. The difference
in semantics between complete and incomplete traces is discussed in some depth by
Eisner et al. [20]—in particular, their description of a “weak view” corresponds to the
checking criteria for incomplete traces described previously.9

4.3.3 Results
TMC was able to correctly check all the examples from the mutex test suite described in
subsection 4.1.2. Correctness here means that a program checked by TMC should be-
have identically to one with the default TESLA instrumentation—all the test programs
produced identical behaviour when run after having their instrumentation removed
by TMC.

Field Assignments

As noted previously, TMC cannot check any assertion that contains a structure field
assignment. This limitation arises because field assignments are inherently value-
dependent—locating the IR instruction that assigns to a structure field is easily done,
but computing the value assigned is not easy (in the general case).

A TESLA-specific solution to this issue would be to devise a way of splitting as-
sertions such that statically provable components are proved where possible, leaving
behind components of the assertion that must be instrumented dynamically. This ap-
proach would require major changes to some TESLA internals, and was found not to
be feasible within the scope of this project. The SMT methods for function return value
inference may also be applicable (with some adaptation).

8Incomplete traces are required to deal with code that may enter an infinite loop or sequence of
recursive calls.

9The weak view asserts that “nothing has yet gone wrong” [20, p. 29], while the strong view asserts
that an assertion is “already” satisifed on a truncated execution path.

27

STATIC ANALYSIS

28

5 | Applications

In this chapter I discuss potential applications of statically checked TESLA to prac-
tical software engineering scenarios. I provide an analysis of how coding style can
make writing TESLA assertions for a system more difficult, with reference to a large
open-source library. Then, motivated by this difficulty, I describe a general method for
applying TESLA to library interfaces with minimal modification to client code. Finally,
I demonstrate a practical application of this technique by adding TESLA instrumenta-
tion to the interface of a LWIP, a widely-used network protocol library.

5.1 LWIP

An initial goal of the project was to investigate how TESLA might be applied to verify
the behaviour of a larger state machine such as that of TCP. However, this verification
proved to be more difficult than anticipated due to a number of C programming idioms
and design choices present in LWIP.

In this section I investigate the application of TESLA to LWIP [19], a widely used,
portable implementation of the IP protocol stack. I describe difficulties encountered
in this process with reference to the LWIP source, as well as an analysis of how code
written from scratch with TESLA instrumentation in mind could mitigate these issues.

5.1.1 Structure

LWIP is distributed as a configurable library so that it can be built on virtually any
platform with a C compiler—interfaces to network buffers, timers and other platform-
specific code are abstracted so that their implementation can be supplied by users.
Configurations for widely used operating systems (generic Unix, Windows etc.) are
distributed as a secondary library together with example applications.

The core networking code of LWIP is around 57K lines of C.1 This code includes
implementations of IPV4, IPV6, TCP, UDP and several application-layer protocols. The
secondary library has around 13K lines of C, mostly contained in implementations of
executable server applications (HTTP, Telnet, SMTP etc.).

1Not including header files or tests.

29

APPLICATIONS

err_t tcp_bind(struct tcp_pcb *pcb, const ip_addr_t *ipaddr, u16_t port);

err_t tcp_close(struct tcp_pcb *pcb);

struct tcp_pcb * tcp_listen_with_backlog(struct tcp_pcb *pcb, u8_t
backlog)↪→

Figure 5.1: Function declarations from the LWIP TCP implementation.

5.1.2 Investigation
The goal of my investigation into LWIP was to instrument the core TCP implementation
with useful TESLA assertions, then to demonstrate that performance improvements
were attainable by applying static analysis to this instrumentation.

Before any investigation could be performed, a version of LWIP built using TESLA
was required. Each of the LWIP-based server applications is built using a Makefile
that compiles the core library separately, then links the application-specific code with
the core library. Modifying this build system to use the TESLA infrastructure was not
difficult, as much of the setup (flags, includes, linking etc.) was in place already—the
only changes needed were to add the extra TESLA-specific rules and to compile to
bitcode instead of object files. The changes made totalled 49 lines of Makefile code.

The end result of this modification was that any of the example applications dis-
tributed with LWIP could be instrumented and built using TESLA. Based on this modi-
fied build of LWIP, I investigated how TESLA could be applied to internal library code.
The remainder of this section describes the features found in the source code that made
applying TESLA (statically analysed or otherwise) more difficult.

TCP State Implementation

At the core of the TCP protocol implementation is a structure representing a single
TCP connection (struct tcp_pcb). Almost all of the TCP protocol implementation is
expressed in terms of these structures—Figure 5.1 contains some function declarations
taken from the source code that use the structure.

Such heavy reliance on structure fields is less than ideal because TMC cannot check
assertions that reference structure field assignments, though checking assignments to
structure fields is within the capabilities of runtime TESLA instrumentation. A further
complication is that the implementation is not consistent in its use of PCB structures—
some functions modify a structure instance passed to them (tc_pbind, tcp_close),
while others return an entirely new instance (tcp_listen_with_backlog). The latter
style of function is more difficult to instrument effectively in TESLA because the object
being asserted about may change midway through an assertion, which is difficult to
express using the TESLA assertion language.

30

APPLICATIONS

Macro Usage

In order for LWIP to be universally portable, it makes heavy use of the C preprocessor
for a number of reasons. For example:

Platform-specific implementations The implementation of some functions can vary
from system to system (e.g. endianness conversion functions). Macros are used
to select the correct implementation of these functions without the overhead of
a function call. This means that any TESLA assertions added to these functions
would become platform-specific, and duplicated between implementations.

Conditional Compilation Almost every feature of LWIP can be enabled, disabled or
modified at compile-time by setting the correct preprocessor definitions (this is
what allows LWIP to be used so effectively on systems with limited resources).
This feature is used in places to conditionally change the fields contained in a
structure—any assertions written about that field must then be aware of the re-
quired #ifdef context.

Inlined Functions Some simple “functions” in LWIP are expressed using macros to
guarantee that there is no function call overhead, rather than relying on the com-
piler to inline them. These function-like macros cannot be asserted about by
TESLA2, and are difficult to distinguish in source code.

Together, these uses of the macro system make TESLA instrumentation more diffi-
cult to add to the LWIP source.

Control Flow

TESLA assertions are most useful (especially when using static analysis) for asserting
properties related to control flow events. However, the style in which LWIP code is
written means that there is little explicit control flow within the protocol implemen-
tation itself—many functions perform complicated work on a PCB structure, then call
only a single other function to send a packet.

In addition to the long functions and shallow call graph in the TCP implementation,
applying TESLA becomes even more difficult because of the way users of the TCP
implementation call into it—code that uses the TCP implementation must register a
set of callback functions that are called at certain points in the protocol’s execution.
This means that control flow moves between user and library code through a dynamic
interface that cannot be reasoned about easily with TESLA. Figure 5.2 shows an extract
from the TCP echo server in which these callbacks are registered.

Registered callbacks are stored as members of a PCB structure. This behaviour
defeats TESLA instrumentation (both static and dynamic)—there is currently no way
to express “the function pcb.member is eventually called” in the assertion language.
Unfortunately, these callback functions contain much of the behaviour that would be

2Because TESLA runs after preprocessing has been applied to the source code.

31

APPLICATIONS

tcp_recv(newpcb, tcpecho_raw_recv);
tcp_err(newpcb, tcpecho_raw_error);
tcp_poll(newpcb, tcpecho_raw_poll, 0);
tcp_sent(newpcb, tcpecho_raw_sent);

Figure 5.2: Callback registration for a user of the LWIP TCP implementation

well-served by TESLA instrumentation. For example, the LWIP documentation de-
scribes the mandated behaviour of a particular callback function:

When the application has processed the incoming data, it must call the
tcp_recved() function to indicate that TCP can increase the receive win-
dow. [30]

Because of the callback interface, instrumenting the invariants of this function could
only be done by the consumer of the library (rather than the author of the library).
This means that the author of the library can do little beyond documentation to ensure
correct usage of the API functions. In section 5.2 I show how this problem can be
partially solved using TESLA.

Anderson et al. [2] did not encounter the problems related to callbacks that I de-
scribe here—the assertions they wrote are targeted at a complete system implementa-
tion where every function of interest is known ahead of time. This means that even if a
function is called through a structure interface, it can still be instrumented. This is not
the case when unknown user code is responsible for registering the callback functions,
as is the case with LWIP.

5.1.3 Summary

The LWIP TCP library presents an interesting target for verification with TESLA. How-
ever, the style in which the library is written means that applying TESLA assertions
to the internal code is both difficult and unlikely to yield any useful insight into the
behaviour of the library. Further informal investigation into the FreeBSD TCP imple-
mentation yielded much the same conclusions, and it is likely that other similar li-
braries would suffer the same problems. Additionally, the use of a callback-based API
for users of the library means that TESLA cannot be directly applied in the situation
where it would be most useful (enforcing temporal assertions on consumer code). An
interesting direction for future work would be to quantify the degree of modification
required for library code to be usefully instrumented with TESLA.

5.2 Safer Library Interfaces with TESLA

In this section I describe the implementation of a mechanism by which a library can
use TESLA assertions to verify correct usage of the library by user code. First, I relate

32

APPLICATIONS

the problem to the difficulties encountered when attempting to apply TESLA to LWIP
in section 5.1. Then, I describe the construction of such an interface using TESLA.
Finally, I successfully apply the technique to an existing server application from the
LWIP distribution.

5.2.1 Motivation
In section 5.1 I investigated how TESLA instrumentation could be applied to the in-
ternal implementation of LWIP, concluding that the most useful place for instrumen-
tation is at the boundary between user and library code. However, the use of user-
registered callbacks means that the library cannot use TESLA to make assertions on
user behaviour.

A solution to this problem should allow users to consume the LWIP libraries as they
would when using the callback API, while also allowing the library to add TESLA
assertions about the behaviour of user code. This would mean the library is able to
enforce temporal safety properties of user programs without any prior knowledge of
the programs.

5.2.2 Implementation Strategy

LWIP distributes a number of example applications that consume the internal TCP API
by using callbacks as described previously—the simplest of these is an implementation
of the echo protocol [35]. In this section I describe a modified version of this application
that includes TESLA assertions supplied by the library.

In normal usage, a program using the LWIP TCP library calls a library function
with a function pointer argument to register their application-specific callbacks. This
is a very flexible approach that gives the program fine-grained control over how it
interacts with the library. Figure 5.3 shows how the program interacts with a library
using this approach.

To add TESLA assertions, user programs must implement a static interface that
can be linked with the library. The primary loss of flexibility with this approach is that
users cannot change their callback functions at compile time. However, this is not yet a
complete solution. Each TESLA assertion must be placed at a source location on the ex-
ecution path it asserts over—intuitively, this would be within the user-supplied inter-
face functions themselves. Because the definitions of these functions are not available
to the library ahead of time, it must implement wrapper functions. These wrappers
call through to the user-supplied interface functions, as well as containing the library
TESLA assertions. Figure 5.4 shows how a program interacts with the library in this
modified usage model.

Adapting the echo server to use this model required only that the wrapper func-
tions and corresponding assertions were written—almost no modification of the appli-
cation code was required beyond removing the callback registration calls.

This adaptation results in two versions of the server application–one where static
analysis has been applied to the library assertions, and one where it has not been.

33

APPLICATIONS

callback1

callback2

...

callbackn

liblwipprogram

Figure 5.3: Default usage of the LWIP callback API

interface1

interface2

...

interfacen

wrapper1

wrapper2

...

wrappern

liblwipprogram

Figure 5.4: Usage of the LWIP callback API with TESLA instrumentation

5.2.3 Summary

In this section I have shown how TESLA can be used by library developers to apply
temporal assertions to users of the library without prior knowledge of the user code.
Additionally, I have demonstrated a method for adapting library interfaces not explic-
itly designed with TESLA instrumentation in mind. This technique was applied suc-
cessfully to an existing application (with minimal modification to application code). In
section 6.2 I give a detailed evaluation of the performance of the instrumented appli-
cations.

The methods developed have some shortcomings when compared to typical C li-
brary development:

34

APPLICATIONS

Distribution A library developed using these methods must be distributed as LLVM
bitcode together with the associated TESLA manifest—this means that users
must install the TESLA toolchain and adapt their build process to use the library.

Safety TESLA assertions on a library interface can only usefully enforce properties of
the functions in the interface—it is easy to construct user code that circumvents
these assertions by executing unsafe code (for example, “casting data to char *
and manipulating raw bytes” [2, p. 13]).

Performance If the user code is amenable to static analysis, then the performance im-
pact of TESLA is minimal. However, this is dependent on how the user code is
written.

Despite these issues, the interface adaptation technique is still a useful tool for li-
brary developers to prevent bugs in user code. Additionally, it represents a significant
generalisation compared to previous applications of TESLA.

35

APPLICATIONS

36

6 | Evaluation

In this chapter I evaluate the success of the project with respect to its initial goals, and
examine how future work could improve on what has been achieved.

6.1 Static Analysis of Assertions

The primary goal of this research project was to investigate to what extent TESLA
assertions can be checked at compile time, with a view to performing optimisation of
instrumented programs by omitting provable assertions. With respect to this goal, the
project has been successful.

6.1.1 Contributions

My primary contribution with regard to static analysis of TESLA assertions is the
TESLA model checker (TMC)—a significant addition to the existing TESLA toolchain.
The assertion language used by TESLA is able to express temporal properties not ex-
pressible in comparable tools; static analysis of a subset of these assertions is therefore
a useful and novel development in the field of program verification.

In subsection 6.2.2, I show that being able to omit provable automata using TMC
leads to a performance increase of 64% on an example workload with only 5 assertions,
a significant performance improvement. Additionally, counterexamples generated by
TMC provide a valuable debugging tool to help developers understand the situations
in which their assertions may fail—even if an assertion is not provable, being able to
demonstrate situations in which it can fail is useful.

6.1.2 Regression Testing with TMC
To evaluate the usefulness of TMC as a development tool, I used it to perform retroac-
tive regression testing on two applications distributed as part of LWIP (implementa-
tions of the echo and SMTP protocols). For each application, I identified a temporal
property required of the application callbacks. For example, the SMTP callback for
connection close events required a property similar to the one shown in Figure 6.1.
The properties used were taken from the applications at their initial working commits.

TMC was able to prove the chosen property initially for the SMTP server, but not for
the echo server because of an “exceptional” branch on which the assertion did not hold.

37

EVALUATION

TESLA_WITHIN(smtp_close, eventually(
call(tcp_arg),
tcp_close(ANY(ptr)) == ERR_OK || call(tcp_arg)

));

Figure 6.1: Temporal property required by an SMTP implementation callback

I applied historical commits to the applications in sequence, checking the property at
each commit. For the SMTP server, the property was proved by TMC at each commit.
For the echo server, the property was provable after a commit refactored the relevant
code.

An attempt was made to reproduce a known bug from the LWIP database, but this
was not possible—the applications using the LWIP API did not have any bugs regis-
tered in the database1. A different choice of library may give better results with regard
to bug-hunting. However, this is not an indictment of the usefulness of TESLA and
TMC—Anderson et al. [2] conclude that TESLA is a useful bug-finding tool, and TMC
is a strict improvement on the capabilities of TESLA.

6.1.3 Performance

Running TMC is computationally expensive—the number of execution traces exam-
ined depends on both the length bound and the complexity of the control flow graph.
However, because traces are examined in order of length, a minimal counterexample
will be produced as quickly as possible if one exists. In practical terms, this means that
TMC will only run for a long time if an assertion has no counterexamples. For exam-
ple, checking any incorrect test case from subsection 4.1.2 with a bound of 1000 basic
blocks takes less than 0.1s, while the successful cases take approximately 125s.

This informal observation relies on the hypothesis that counterexamples are almost
always minimal. I argue that this is the case for automata that do not place finite
upper bounds on sequence repetition—if this holds, then the size of the automaton
(and therefore of minimal counterexamples) is bounded by the number of separate
statements in the automaton. A full analysis of automaton structure may be able to
formalise this argument.

Model checking TESLA assertions is likely to remain an “offline” tool for
developers—for development builds, the runtime overhead of TESLA instrumen-
tation is likely to be acceptable, while running TMC for several minutes is not likely
to be. For release builds, running TMC for a long period of time (by a continuous
integration tool, for example) would be an acceptable trade-off to improve runtime
performance.

Informal analysis indicates that the complexity of TMC is polynomial in the number

1All the bugs are instead relevant to the internal implementation.

38

EVALUATION

of basic blocks bounding the counterexample length. Performance can be significantly
improved in two primary ways:

• LLVM implements a control flow graph simplification pass that can potentially
reduce the number of conditional branches. Running this pass after the inlining
process led to a significant performance improvement.

• Narrower bounds for assertions will naturally lead to less complex control flow
in the inlined function—this is the responsibility of the assertion author.

I estimate that the corpus of 84 TESLA assertions written by Anderson et al. [2] for
the FreeBSD kernel could be checked by TMC during an overnight build of the kernel
(8–10 hours). This time estimate relies on the fact that some of the assertions are not
provably safe. Improvements could be made to this time by parallelising TMC, or by
not rechecking assertions on unmodified code paths. A formal measurement of this
time was not possible because the assertions were written against an older version of
TESLA not supported by TMC.

6.1.4 Correctness

TMC implements a decision procedure (“is this assertion usage safe to remove?”).
False negatives result in redundant instrumentation code being left in a program, while
false positives result in dynamic checking being unsafely removed. As a result, TMC
must be completely free of false positives in order to be correct. Livshits et al. [28]
advocate for soundiness2 as a goal of program analysis. In this spirit, I acknowledge
that TMC is unsound in two important ways: trace length and inlining depth. If these
two parameters are sufficiently large (for a program being analysed), then the analysis
I present is sound.

During development, any false positives were treated as serious bugs. During my
instrumentation of the LWIP library interface (and other work not included in this dis-
sertation), I encountered only a small number of these, all of which were corrected.3

Future work on testing TMC could use techniques from automatic test generation or
fuzzing to ensure no false positives are found.

6.1.5 Future Work
Future work on TMC could improve it in a number of ways. The use of non-symbolic
model checking is not optimal—adapting it to construct a symbolic representation
would allow it to take advantage of wider improvements in the field of model check-
ing.

The TESLA assertion language could be extended to allow richer properties of func-
tion return values to be expressed (e.g. “function f returns a value > 0 and ≤ 10”).

2In short, soundiness is “soundness modulo openly-stated exceptions”.
3Some “unsafe” behaviour remains because of bugs in the original TESLA implementation.

39

EVALUATION

SMT methods are well suited to this type of expression. Another interesting extension
would be to allow a non-sequential syntax for describing complex automata explicitly,
though integrating this with the clang-based assertion parser would be difficult.

Kashyap and Garg [25] describe a method for discovering “crucial events” in
traces—these events can be used to perform more intelligently directed search for
counterexamples. Applying these techniques to TMC could improve checking per-
formance when counterexamples are not the shortest traces.

6.2 Application to Real-World Code

A secondary goal of the project was to investigate how TESLA could be used to verify
the behaviour of a network protocol. In particular, performance-sensitive code was of
interest here in order to show the potential benefits of applying static analysis to TESLA
assertions. While this goal was not directly successful, the investigation into how such
code could be modelled led to an explicit analysis of source code features that make
TESLA assertions less applicable, as well as to a general method for applying TESLA
to library interface code.

6.2.1 Contributions

The approach taken by Anderson et al. [2] towards using TESLA placed it firmly in
the category of debugging tools—that is, TESLA instrumentation could be added to a
program in order to diagnose bugs, but it would be removed in a release build due to
the associated runtime performance overhead. The use cases described in the original
TESLA paper are all applications to individual programs or libraries where this debug-
ging process has been used successfully. However, it is worth noting that the original
uses of TESLA all involve instrumentation on system boundaries in much the same
way as the general usage I describe (though this is not stated explicitly in the paper).4

I contribute a more general usage of TESLA—library developers can use TESLA to
enforce usage properties of their code without having prior knowledge of the user’s
code. This method is applied successfully to the LWIP TCP callback library. While
applying TESLA in this way is possible without my extensions for static analysis, the
performance impact of doing so can be prohibitive. In subsection 6.2.2 I perform a
detailed performance analysis of this performance impact, and the possible improve-
ments that can be made.

6.2.2 Performance
In section 5.2 I described an adaptation of the LWIP TCP interface to allow for TESLA
instrumentation, and demonstrated that it could be used to build existing applications

4In particular, the boundaries identified are the OpenSSL X509 verification API, the FreeBSD MAC
framework and the Objective-C message dispatch mechanism.

40

EVALUATION

with almost no modification of their code. However, adding TESLA instrumentation
incurs a performance overhead for the application.

In this section I analyse the overhead of TESLA instrumentation in the context of
an echo server written using the LWIP TCP library. I show that even with as few as
five assertions, performance is degraded by 40%. Finally, I show that applying TMC
to these assertions can reduce the overhead significantly, and in some cases remove it
entirely.

Experimental Setup

A useful benchmark for an echo server is to measure how many requests of a fixed
size it can handle in a fixed time period. An existing tool by Hoyer [23] was used to
perform this benchmark—the tool runs for a fixed length of time, sending as many
messages to a server as it can (using a configurable number of threads).

Three versions of the echo server were compared in this experiment—an unmod-
ified one compiled directly from the LWIP sources, one with TESLA instrumentation
enabled, and one where TESLA instrumentation was removed by TMC (referred to as
unmodified, instrumented and static respectively).

The benchmarks were run on a dedicated server (Intel Xeon E5-1620 3.6 GHz, 8
cores, 64GB of RAM) running FreeBSD 11. The benchmark was run for 60 s with a
message size of 512 bytes in every case, and the number of sending threads was varied
from 1 to 10.

For the instrumented and statically analysed versions, the library wrapper code
contained five TESLA assertions covering the possible library calls that the user code
could make. All of these were reported as safe by TMC.

Results

In all three version, throughput was saturated when sending on two or more threads—
using more threads to send data had no effect on throughput. The mean throughput
over 2–10 sending threads was therefore used as a measure of the maximum possible
performance of each server (relative to the unmodified server implementation).

Figure 6.2 compares the relative throughput for each implementation. The version
with runtime TESLA instrumentation achieves only 61% throughput when compared
to the unmodified version, while the version with static analysis applied achieves 84%
throughput.

Even though all TESLA automata were reported as safe by TMC, some TESLA code
remains in the binary. Using Callgrind [38] (a simulation-based profiling tool) shows
that the statically-analysed server spends a large portion of its execution time in the
TESLA runtime library (performing redundant work).

Because the overhead of the remaining TESLA instrumentation is high, even when
there are no automata, I extended the instrumenting tool with an optimisation to han-
dle this case. The resulting server implementation achieved 99.4% throughput com-

41

EVALUATION

Unmodified Static Instrumented
0

10

20

30

40

50

60

70

80

90

100

110
100

84.1

60.8

Server implementation

Th
ro

ug
hp

ut
re

la
ti

ve
to

un
m

od
ifi

ed
se

rv
er

(%
)

Relative Throughput of Echo Servers

Figure 6.2: Effect of TESLA instrumentation and library interface adaptation on echo
server throughput

pared to the unmodified server. While this performance result is appealing, it is worth
noting that it will only be possible when every automaton is statically provable.

Analysis

It is clear from these results that TESLA instrumentation has a significant impact on
performance. In this section I analyse the causes of this overhead by using the hwpmc
[24] tools available in FreeBSD.

Hardware performance counters are a set of specialised registers available on mod-
ern processors that can be used to measure architectural and microarchitectural per-
formance events. For example, the number of mispredicted branches or the number
of cache line misses are commonly made available. The exact data available varies
between architectures, and even between different models of processor on the same
architecture. FreeBSD makes these performance counters available to user programs
through the hwpmc driver and associated tooling.

42

EVALUATION

Using these counters can have an effect on the performance characteristics of a pro-
gram. In order to verify that this effect was acceptable, the experiment described above
was repeated with five performance counters enabled. There was no significant change
in relative performance when running with counters enabled—the maximum devia-
tion from the results given above was 1.7%.5

The performance counters enabled were as follows: the number of instructions re-
tired, the number of load instructions retired, and the number of loads from the L1,
L2 and L3 caches respectively. Each counter was run in sampling mode, meaning that
data was obtained by statistical sampling over all the events observed. Each server
was sampled over the course of a fixed-size data transfer, with the size of the data used
varying from 10–150MB.

An approximation to the amount of work performed by each version is the total
number of instructions retired.6 Figure 6.3 shows the number of instructions retired
during these transfers for each server version.

The number of instructions retired is proportional to the quantity of data being
transferred by the server. On average, the statically analysed server retired 1.37× the
instructions of the unmodified server, while the instrumented version retired 2.49× as
many. Further experiments with much larger data files showed that this relationship
continues to hold.

The memory access patterns for each version are almost identical—for each one,
28% of the total instructions retired are load instructions, of which 94% are served by
the L1 cache, and less than 0.2% by the L3 cache (although because the total number of
instructions executed is greater, the total number of loads from the L3 cache and cache
misses will increase).

A similar analysis was performed for instruction cache misses, with the same
conclusion—TESLA instrumentation did not proportionately change the microarchi-
tectural performance characteristics of the server implementations.

The sampled counter data can be used to show where instructions are retired dur-
ing execution. Figure 6.4 shows a sampled excerpt from the instrumented server. From
this data we can see that TESLA automaton operations account for 37% of the retired
instructions, with 25% corresponding to state updates and 12% to lifetime manage-
ment.7

The equivalent data for the statically analysed server (in Figure 6.5) shows where
the remaining overhead arises. Calls to the automaton lifetime functions remain (with
a similar number of associated instructions), while the state update functions have
been removed. Calls to the lifetime functions can be removed only if there are no
automata to be instrumented.

5Absolute throughput with counters enabled was approximately 90% of the throughput with no
counters.

6An instruction is retired when it has been executed and its effects written back—in a superscalar
architecture, instructions may be speculatively dispatched but not retired.

7The TESLA terminology for creating and destroying automata is “sunrise” and “sunset”.

43

EVALUATION

20 40 60 80 100 120 140
0

20,000

40,000

60,000

80,000

100,000

120,000

140,000

160,000

180,000

200,000

220,000

240,000

Data size (MB)

In
st

ru
ct

io
ns

re
ti

re
d

Effect of data transfer size on instructions retired

Unmodified
Static

Instrumented

Figure 6.3: Number of instructions retired during a fixed-size data transfer

@ INSTR_RETIRED_ANY [227749 samples]

36.66% [83489] strncmp @ /lib/libc.so.7
100.0% [83489] same_static_lifetime @ libtesla.so

68.99% [57601] tesla_update_class_state @ libtesla.so
16.00% [13358] tesla_sunset @ libtesla.so
15.01% [12530] tesla_sunrise @ libtesla.so

06.73% [15337] inet_chksum_pseudo @ tesla-app.instr
...

Figure 6.4: Callchain output showing number of instructions retired with TESLA in-
strumentation enabled

44

EVALUATION

@ INSTR_RETIRED_ANY [125375 samples]

22.71% [28467] strncmp @ /lib/libc.so.7
100.0% [28467] same_static_lifetime @ libtesla.so

51.17% [14567] tesla_sunrise @ libtesla.so
48.83% [13900] tesla_sunset @ libtesla.so

12.74% [15968] inet_chksum_pseudo @ tesla-app.static
...

Figure 6.5: Callchain output showing number of instructions retired with TESLA in-
strumentation removed

6.3 Usability

While not an explicit goal of the project at the outset, the usability of TESLA as a
programming tool is an issue that I encountered frequently during the course of the
project. I was able to resolve a number of these issues, contributing to the usability of
TESLA:

LLVM TESLA now builds against the latest stable version of LLVM, making it easier
to install (a full source build of LLVM is no longer necessary on most operating
systems). Future updates will also be made easier by this work.

Installation I have simplified the TESLA build and installation process, allowing it
to be installed using Homebrew [22] on macOS. Distributions for other package
managers would also be possible.

Documentation The TESLA documentation was somewhat out of date when I began
my work—I have produced a new set of documentation that covers basic usage
of TESLA, and notes many of the subtle issues I have experienced during my
work.

45

EVALUATION

46

7 | Conclusion

In this report, I have investigated the use of static analysis techniques for optimising
TESLA assertions. My implementation of a model checker for TESLA (TMC) is able
to correctly check a useful subset of its assertions. Additionally, I have shown signifi-
cant performance improvements that allow TESLA to be used in contexts it would not
previously have been feasible to.

As well as my work on static analysis, I have contributed to the understanding
and usage of TESLA in general—TMC can be used to produce counterexamples to a
TESLA assertion, and I provide a collection of programs that demonstrate how TESLA
can be used to model temporal properties of a data structure. Future work on TESLA
(whether in the context of static analysis or otherwise) will benefit from these improve-
ments, as well as from the improvements to the TESLA implementation and documen-
tation I have contributed.

TMC itself constitutes an explicit formalisation of the underlying principles of
TESLA, as well as demonstrating a novel SMT-based algorithm for proving proper-
ties of control flow that depend partially on data flow. I have identified ways in which
future work could extend these techniques to prove stronger properties.

An initial goal of the project was to provide a TESLA model of a network protocol
implementation. While this goal was not fully successful, the insights gained from
the investigation itself are a useful contribution in their own right—I have described
features of source code that are hostile to TESLA instrumentation and static analysis,
and introduced a characterisation of scenarios in which TESLA can be usefully applied.

Motivated by this characterisation of the effective use of TESLA, I have demon-
strated a framework by which library developers can more reliably enforce temporal
properties on usages of their library code. This is a more general application of TESLA
than previous work has demonstrated. The performance improvements made possi-
ble through the use of static analysis are an important part of this contribution—I have
shown that even a small number of assertions can cause a large runtime performance
overhead on instrumented programs, and that TMC is able to completely eliminate
this overhead in real programs.

47

CONCLUSION

48

Bibliography

[1] Bowen Alpern and Fred B. Schneider. “Defining Liveness”. In: Information Pro-
cessing Letters. 21st ed. Vol. 4. Ithaca, NY, USA: Cornell University, 1984, pp. 181–
185. URL: https://doi.org/10.1016/0020-0190(85)90056-0.

[2] Jonathan Anderson et al. “TESLA: Temporally Enhanced System Logic Asser-
tions”. In: Proceedings of the Ninth European Conference on Computer Systems.
EuroSys ’14. ACM, 2014, 19:1–19:14. ISBN: 978-1-4503-2704-6. DOI: 10 . 1145 /
2592798.2592801. (Visited on 10/04/2016).

[3] Clark Barrett, Pascal Fontaine, and Cesare Tinelli. The Satisfiability Modulo Theo-
ries Library (SMT-LIB). 2016. URL: www.SMT-LIB.org.

[4] Clark Barrett, Aaron Stump, and Cesare Tinelli. “The SMT-LIB Standard: Ver-
sion 2.0”. In: Proceedings of the 8th International Workshop on Satisfiability Modulo
Theories (Edinburgh, UK). Ed. by A. Gupta and D. Kroening. 2010. URL: http:
//smtlib.cs.uiowa.edu/papers/smt-lib-reference-v2.0-r10.12.21.pdf.

[5] Clark Barrett et al. “CVC4”. In: Proceedings of the 23rd International Conference on
Computer Aided Verification. CAV’11. Berlin, Heidelberg: Springer-Verlag, 2011,
pp. 171–177. ISBN: 978-3-642-22109-5. URL: http://dl.acm.org/citation.cfm?
id=2032305.2032319 (visited on 04/27/2017).

[6] Al Bessey et al. “A Few Billion Lines of Code Later: Using Static Analysis to Find
Bugs in the Real World”. In: Commun. ACM 53.2 (Feb. 2010), pp. 66–75. ISSN:
0001-0782. DOI: 10.1145/1646353.1646374. (Visited on 05/23/2017).

[7] Armin Biere et al. “Symbolic Model Checking Without BDDs”. In: Proceedings of
the 5th International Conference on Tools and Algorithms for Construction and Analy-
sis of Systems. TACAS ’99. London, UK, UK: Springer-Verlag, 1999, pp. 193–207.
ISBN: 978-3-540-65703-3. URL: http://dl.acm.org/citation.cfm?id=646483.
691738 (visited on 04/09/2017).

[8] Armin Biere et al. Handbook of Satisfiability. Vol. 185. Frontiers in Artificial Intel-
ligence and Applications. Amsterdam, The Netherlands: IOS Press, 2009. ISBN:
978-1-58603-929-5.

49

https://doi.org/10.1016/0020-0190(85)90056-0
http://dx.doi.org/10.1145/2592798.2592801
http://dx.doi.org/10.1145/2592798.2592801
www.SMT-LIB.org
http://smtlib.cs.uiowa.edu/papers/smt-lib-reference-v2.0-r10.12.21.pdf
http://smtlib.cs.uiowa.edu/papers/smt-lib-reference-v2.0-r10.12.21.pdf
http://dl.acm.org/citation.cfm?id=2032305.2032319
http://dl.acm.org/citation.cfm?id=2032305.2032319
http://dx.doi.org/10.1145/1646353.1646374
http://dl.acm.org/citation.cfm?id=646483.691738
http://dl.acm.org/citation.cfm?id=646483.691738

BIBLIOGRAPHY

[9] Cristian Cadar, Daniel Dunbar, and Dawson Engler. “KLEE: Unassisted and Au-
tomatic Generation of High-Coverage Tests for Complex Systems Programs”. In:
Proceedings of the 8th USENIX Conference on Operating Systems Design and Imple-
mentation. OSDI’08. Berkeley, CA, USA: USENIX Association, 2008, pp. 209–224.
URL: http://dl.acm.org/citation.cfm?id=1855741.1855756 (visited on
04/09/2017).

[10] Hao Chen and David Wagner. “MOPS: An Infrastructure for Examining Security
Properties of Software”. In: Proceedings of the 9th ACM Conference on Computer and
Communications Security. CCS ’02. New York, NY, USA: ACM, 2002, pp. 235–244.
ISBN: 978-1-58113-612-8. DOI: 10.1145/586110.586142. (Visited on 04/10/2017).

[11] Hao Chen, David Wagner, and Drew Dean. “Setuid Demystified”. In: Proceedings
of the 11th USENIX Security Symposium. Berkeley, CA, USA: USENIX Association,
2002, pp. 171–190. ISBN: 978-1-931971-00-3. URL: http://dl.acm.org/citation.
cfm?id=647253.720278 (visited on 04/12/2017).

[12] Edmund M. Clarke and E. Allen Emerson. “Design and Synthesis of Synchro-
nization Skeletons Using Branching-Time Temporal Logic”. In: Logic of Programs,
Workshop. London, UK, UK: Springer-Verlag, 1982, pp. 52–71. ISBN: 978-3-540-
11212-9. URL: http://dl.acm.org/citation.cfm?id=648063.747438 (visited on
04/08/2017).

[13] Edmund Clarke, Daniel Kroening, and Karen Yorav. “Behavioral Consistency of
C and Verilog Programs Using Bounded Model Checking”. In: Proceedings of the
40th Annual Design Automation Conference. DAC ’03. New York, NY, USA: ACM,
2003, pp. 368–371. ISBN: 978-1-58113-688-3. DOI: 10.1145/775832.775928. (Vis-
ited on 04/10/2017).

[14] David R. Cok, David Déharbe, and Tjark Weber. “The 2014 SMT Competition”.
In: Journal on Satisfiability, Boolean Modeling and Computation 9 (2014), pp. 207–242.
URL: https://satassociation.org/jsat/index.php/jsat/article/view/122.

[15] Stephen A. Cook. “The Complexity of Theorem-Proving Procedures”. In: Pro-
ceedings of the Third Annual ACM Symposium on Theory of Computing. STOC ’71.
New York, NY, USA: ACM, 1971, pp. 151–158. DOI: 10.1145/800157.805047.
(Visited on 04/27/2017).

[16] Lucas Cordeiro, Bernd Fischer, and Joao Marques-Silva. “SMT-Based Bounded
Model Checking for Embedded ANSI-C Software”. In: Proceedings of the 2009
IEEE/ACM International Conference on Automated Software Engineering. ASE ’09.
Washington, DC, USA: IEEE Computer Society, 2009, pp. 137–148. ISBN: 978-0-
7695-3891-4. DOI: 10.1109/ASE.2009.63. (Visited on 04/11/2017).

[17] Markus Dahlweid et al. “VCC: Contract-Based Modular Verification of Concur-
rent C”. In: 2009 31st International Conference on Software Engineering - Compan-
ion Volume. 2009 31st International Conference on Software Engineering - Com-
panion Volume. May 2009, pp. 429–430. DOI: 10.1109/ICSE-COMPANION.2009.
5071046.

50

http://dl.acm.org/citation.cfm?id=1855741.1855756
http://dx.doi.org/10.1145/586110.586142
http://dl.acm.org/citation.cfm?id=647253.720278
http://dl.acm.org/citation.cfm?id=647253.720278
http://dl.acm.org/citation.cfm?id=648063.747438
http://dx.doi.org/10.1145/775832.775928
https://satassociation.org/jsat/index.php/jsat/article/view/122
http://dx.doi.org/10.1145/800157.805047
http://dx.doi.org/10.1109/ASE.2009.63
http://dx.doi.org/10.1109/ICSE-COMPANION.2009.5071046
http://dx.doi.org/10.1109/ICSE-COMPANION.2009.5071046

BIBLIOGRAPHY

[18] Leonardo De Moura and Nikolaj Bjørner. “Z3: An Efficient SMT Solver”. In: Pro-
ceedings of the Theory and Practice of Software, 14th International Conference on Tools
and Algorithms for the Construction and Analysis of Systems. TACAS’08/ETAPS’08.
Berlin, Heidelberg: Springer-Verlag, 2008, pp. 337–340. ISBN: 978-3-540-78799-0.
URL: http://dl.acm.org/citation.cfm?id=1792734.1792766 (visited on
04/25/2017).

[19] Adam Dunkels. Design and Implementation of the lwIP TCP/IP Stack. Swedish Insti-
tute of Computer Science, 2001. URL: http://citeseerx.ist.psu.edu/viewdoc/
download?doi=10.1.1.109.1795&rep=rep1&type=pdf.

[20] Cindy Eisner et al. “Reasoning with Temporal Logic on Truncated Paths”. In:
Computer Aided Verification. International Conference on Computer Aided Verifi-
cation. Springer, Berlin, Heidelberg, July 8, 2003, pp. 27–39. DOI: 10.1007/978-
3-540-45069-6_3. (Visited on 05/05/2017).

[21] Julien Henry, David Monniaux, and Matthieu Moy. “PAGAI: A Path Sensitive
Static Analyser”. In: Electron. Notes Theor. Comput. Sci. 289 (Dec. 2012), pp. 15–25.
ISSN: 1571-0661. DOI: 10.1016/j.entcs.2012.11.003. (Visited on 03/31/2017).

[22] Homebrew — The Missing Package Manager for macOS. URL: https://brew.sh/
(visited on 05/31/2017).

[23] Harald Hoyer. Rust Echo Bench. Version 8c116c6. Dec. 9, 2016. URL: https://
github.com/haraldh/rust_echo_bench (visited on 04/18/2017).

[24] hwpmc(4): FreeBSD Kernel Interfaces Manual. Nov. 2012. URL: https : / / www .
freebsd.org/cgi/man.cgi?query=hwpmc.

[25] Sujatha Kashyap and Vijay K. Garg. “Producing Short Counterexamples Using
“Crucial Events””. In: Computer Aided Verification. International Conference on
Computer Aided Verification. Springer, Berlin, Heidelberg, July 7, 2008, pp. 491–
503. DOI: 10.1007/978-3-540-70545-1_47. (Visited on 05/06/2017).

[26] Leslie Lamport. “Proving the Correctness of Multiprocess Programs”. In: IEEE
Trans. Softw. Eng. 3.2 (Mar. 1977), pp. 125–143. ISSN: 0098-5589. DOI: 10.1109/
TSE.1977.229904. (Visited on 04/06/2017).

[27] Chris Lattner. “LLVM: An Infrastructure for Multi-Stage Optimization”. Com-
puter Science Dept., University of Illinois at Urbana-Champaign, 2002. URL:
http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.10.331
(visited on 04/06/2017).

[28] Benjamin Livshits et al. “In Defense of Soundiness: A Manifesto”. In: Commun.
ACM 58.2 (Jan. 2015), pp. 44–46. ISSN: 0001-0782. DOI: 10.1145/2644805. (Visited
on 05/14/2017).

[29] LLVM Language Reference Manual — LLVM 5 Documentation. URL: http://llvm.
org/docs/LangRef.html#abstract (visited on 05/31/2017).

[30] lwIP Wiki: Raw TCP. URL: http://lwip.wikia.com/wiki/Raw/TCP#Receiving_
TCP_data (visited on 05/31/2017).

51

http://dl.acm.org/citation.cfm?id=1792734.1792766
http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.109.1795&rep=rep1&type=pdf
http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.109.1795&rep=rep1&type=pdf
http://dx.doi.org/10.1007/978-3-540-45069-6_3
http://dx.doi.org/10.1007/978-3-540-45069-6_3
http://dx.doi.org/10.1016/j.entcs.2012.11.003
https://brew.sh/
https://github.com/haraldh/rust_echo_bench
https://github.com/haraldh/rust_echo_bench
https://www.freebsd.org/cgi/man.cgi?query=hwpmc
https://www.freebsd.org/cgi/man.cgi?query=hwpmc
http://dx.doi.org/10.1007/978-3-540-70545-1_47
http://dx.doi.org/10.1109/TSE.1977.229904
http://dx.doi.org/10.1109/TSE.1977.229904
http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.10.331
http://dx.doi.org/10.1145/2644805
http://llvm.org/docs/LangRef.html#abstract
http://llvm.org/docs/LangRef.html#abstract
http://lwip.wikia.com/wiki/Raw/TCP#Receiving_TCP_data
http://lwip.wikia.com/wiki/Raw/TCP#Receiving_TCP_data

BIBLIOGRAPHY

[31] Kenneth Lauchlin McMillan. “Symbolic Model Checking: An Approach to the
State Explosion Problem”. Pittsburgh, PA, USA: Carnegie Mellon University,
1992. URL: http://www.kenmcmil.com/pubs/thesis.pdf.

[32] Florian Merz, Stephan Falke, and Carsten Sinz. “LLBMC: Bounded Model
Checking of C and C++ Programs Using a Compiler IR”. In: Verified Software:
Theories, Tools, Experiments. International Conference on Verified Software: Tools,
Theories, Experiments. Springer, Berlin, Heidelberg, Jan. 28, 2012, pp. 146–161.
DOI: 10.1007/978- 3- 642- 27705-4_12. URL: http://link.springer.com/
chapter/10.1007/978-3-642-27705-4_12 (visited on 02/07/2017).

[33] Jeremy Morse et al. “Context-Bounded Model Checking of LTL Properties for
ANSI-C Software”. In: Proceedings of the 9th International Conference on Software
Engineering and Formal Methods. SEFM’11. Berlin, Heidelberg: Springer-Verlag,
2011, pp. 302–317. ISBN: 978-3-642-24689-0. URL: http://dl.acm.org/citation.
cfm?id=2075679.2075702 (visited on 04/11/2017).

[34] Jeremy Morse et al. “Model Checking LTL Properties over ANSI-C Programs
with Bounded Traces”. In: Software & Systems Modeling 14.1 (Feb. 1, 2015), pp. 65–
81. ISSN: 1619-1366, 1619-1374. DOI: 10.1007/s10270-013-0366-0. (Visited on
02/07/2017).

[35] J. Postel. Echo Protocol. STD 20, RFC 862. May 1983. URL: http://dx.doi.org/
10.17487/RFC0862.

[36] Publications: Z3Prover/Z3 Wiki. URL: https://github.com/Z3Prover/z3/wiki/
Publications (visited on 05/31/2017).

[37] Michael O. Rabin and Dana Scott. “Finite Automata and Their Decision Prob-
lems”. In: IBM J. Res. Dev. 3.2 (Apr. 1959), pp. 114–125. ISSN: 0018-8646. DOI:
10.1147/rd.32.0114. (Visited on 04/07/2017).

[38] Josef Weidendorfer, Markus Kowarschik, and Carsten Trinitis. “A Tool Suite for
Simulation Based Analysis of Memory Access Behavior”. In: Computational Sci-
ence - ICCS 2004. International Conference on Computational Science. Springer,
Berlin, Heidelberg, June 6, 2004, pp. 440–447. DOI: 10.1007/978-3-540-24688-
6_58. (Visited on 04/19/2017).

52

http://www.kenmcmil.com/pubs/thesis.pdf
http://dx.doi.org/10.1007/978-3-642-27705-4_12
http://link.springer.com/chapter/10.1007/978-3-642-27705-4_12
http://link.springer.com/chapter/10.1007/978-3-642-27705-4_12
http://dl.acm.org/citation.cfm?id=2075679.2075702
http://dl.acm.org/citation.cfm?id=2075679.2075702
http://dx.doi.org/10.1007/s10270-013-0366-0
http://dx.doi.org/10.17487/RFC0862
http://dx.doi.org/10.17487/RFC0862
https://github.com/Z3Prover/z3/wiki/Publications
https://github.com/Z3Prover/z3/wiki/Publications
http://dx.doi.org/10.1147/rd.32.0114
http://dx.doi.org/10.1007/978-3-540-24688-6_58
http://dx.doi.org/10.1007/978-3-540-24688-6_58

	Introduction
	Background
	Temporal Assertions
	Summary of Existing Work
	Programming with TESLA
	Terminology
	Build Process
	Writing Assertions
	The TESLA Assertion Language

	LLVM

	Related Work
	Program Verification
	Bounded Model Checking
	Other Approaches

	SMT
	Background
	Related Work

	Static Analysis
	Modelling Locks with TESLA
	Lock Implementation
	TESLA Assertions
	Performance Overhead

	Formalising TESLA Assertions
	Program Events
	Composition

	TMC: a TESLA Model Checker
	Data-flow Inference
	Model Checking Algorithm
	Results

	Applications
	lwIP
	Structure
	Investigation
	Summary

	Safer Library Interfaces with TESLA
	Motivation
	Implementation Strategy
	Summary

	Evaluation
	Static Analysis of Assertions
	Contributions
	Regression Testing with TMC
	Performance
	Correctness
	Future Work

	Application to Real-World Code
	Contributions
	Performance

	Usability

	Conclusion

