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Chapter 1

Introduction

1.1 Background

In computer science, computation of a particular kind is often modelled by
a calculus—a mathematical definition of computation semantics. The most
well known of these is the untyped λ-calculus, first described by Alonzo
Church [1] in the 1930s. The basic model Church provided is now frequently
used to reason about and describe functional programming languages such
as Haskell or Standard ML.

A current trend in industry is the need for increased parallelism in pro-
grams due to limitations in the single-core performance of microprocessors.
As a result, research into parallel computation is a popular topic in theoret-
ical computer science today. Reasoning about the behaviour of such parallel
programs is difficult in practice (when compared to reasoning about sequen-
tial programs). As well as this, many different models of parallel computation
exist—for example, the run-forever concurrent processes of Erlang [2], or the
SIMD1 processing used in GPU-based computation [3].

Perhaps the first attempt to formalise the notion of parallel composition as
a way of structuring programs was Tony Hoare’s Communicating Sequential
Processes (CSP) [4] in 1978. The initial specification lacked a mathemati-
cal semantics, and as such was closer in form to a programming language
than to a process algebra.2 In 1980, Robin Milner presented his Calculus
of Communicating Systems (CCS) [5]—a conceptually similar language, but
mathematically described as a process algebra.

1Single Instruction, Multiple Data—the same operation is applied to many independent
data simultaneously.

2A semantic model that uses algebraic laws to formalise the interactions between con-
currently executing processes.

1



1.2. PREVIOUS AND RELATED WORK

The π-calculus was presented by Milner in a 1992 paper [6] as a process
algebra based only on the communication of names—a model that is more
abstract than CCS, while being fully expressive (Milner showed that the π-
calculus is in fact Turing complete [7] by demonstrating an encoding of the
λ-calculus).3

Since then, the π-calculus has since been studied in detail, with variants
of it being used to model systems as diverse as cryptographic protocols [9]
and biological systems [10]. As well as this, several programming languages
and libraries have been developed that integrate ideas from the π-calculus.

The semantics of the π-calculus are based on a collection of concurrently
executing processes that communicate by a name passing mechanism. Pro-
cesses synchronise with each other on a complementary action pair (input
x(a) and output x〈b〉—one process sends the name b, the other receives it,
and both continue execution). Besides input, output and parallel composi-
tion, the only other fundamental operation in the π-calculus is the infinite
replication of a process.

1.2 Previous and Related Work

There exist various previous implementations of concurrent languages based
on the concurrency models described by CSP, CCS and the π-calculus. As
well as full languages, multiple virtual machine architectures for executing
compiled concurrent bytecode exist (of which the most well known is BEAM,
the Erlang virtual machine [11]).

One of the earliest such languages to be developed was occam, which
drew on CSP as a basis [12]. The language was originally intended to be
the native programming solution for the Transputer4 series of microproces-
sors developed by the British company INMOS in the 1980s. Following the
end of development by INMOS, Fred Barnes and Peter Welch at the Univer-
sity of Kent produced a new version of the language named occam-π that
incorporates features from the π-calculus [13].

A similar language is Pict, designed to incorporate the semantics of the
π-calculus [14], while adding features to improve its usefulness as a general-
purpose language. In this way Pict is similar to the language I implement
in this project, although Pict has a far greater scope of features than would
be feasible for a Part II project (e.g. a static type system with partial infer-

3Banach and van Breugel show that CCS is also Turing-complete, by showing an en-
coding of the π-calculus in CCS [8].

4An architecture designed specifically for parallel computing by connecting many indi-
vidual processors in a network.
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1.2. PREVIOUS AND RELATED WORK

ence, recursive types, record types and pattern matching). Additionally, the
implementation of Pict described in [14] compiles to C, while in this project
I compile to a bytecode format that is executed by a virtual machine.
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Chapter 2

Preparation

In this chapter I give an analysis of the project requirements and how they
will be met from a software engineering perspective. Additionally, I give
a summary of the syntax and semantics of the π-calculus. I give a design
for PCL, a language based on the π-calculus, and a set of virtual machine
instructions that can be used as a target for compilation of PCL.

2.1 Requirements Analysis

In this section I lay out the primary requirements that were identified for the
project, and how they were analysed in order to formally specify the goals of
the project.

2.1.1 Components

The primary components of the system as proposed are:

Language Design A language with well-defined syntax and semantics should
be designed. The primary work of the project will then be concerned
with the implementation of this language.

For syntax, a formal description of the language’s format should be
produced that details its grammar and lexical structure. With regard
to semantics, it will be beyond the scope of the project to produce a
formal operational semantics for the language that can be shown to
be equivalent to the π-calculus in some sense. Instead an informal
description of program behaviour, together with a demonstration of
behavioural correspondence with the π-calculus will suffice.

4



2.1. REQUIREMENTS ANALYSIS

Virtual Machine Design In order to simplify the compilation of the lan-
guage, the project will not aim to compile to native code. Instead a
custom instruction set will be designed. This instruction set should
allow richer instruction behaviour—this in turn will simplify the task
of code generation.

The design of the virtual machine should however be low-level enough
that it could potentially (with some modification and abstraction) be
treated as an abstract machine for process calculi in general—though
performing this modification is beyond the scope of the project. Having
a degree of coupling between the semantics of the π-calculus and the
virtual machine design will therefore be acceptable.

Interpreter An interpreter should be built to execute a single sequential
program using the instruction set described above. Concurrency should
be implemented by a scheduler that coordinates the execution of mul-
tiple interpreter threads.

The interpreter should not be a direct implementation of the opera-
tional semantics of the language (i.e. it should not encode the π-calculus
transition relation directly—rather it should execute a sequence of com-
piled instructions).

Lexical Analysis Based on the definition of the language syntax, a lexer
should be built that can generate a tokenised representation of source
text.

Parser From a list of tokens generated by the lexer, a parser should be im-
plemented that can produce a suitable representation of the program’s
abstract syntax. An appropriate parsing algorithm will have to be
decided on and implemented for this component.

Code Generation Given an abstract syntax tree, virtual machine instruc-
tions should be emitted that correspond to the behaviour of the pro-
gram. Inefficient or redundant instruction sequences will be tolerated
as optimisation is beyond the scope of the project.

Link to External Code A mechanism for programs written in the lan-
guage to call external code should be devised. This mechanism will
allow the implementation to call programs that perform computation
that the language cannot easily.

5



2.1. REQUIREMENTS ANALYSIS

2.1.2 System Design

It will obviously be advantageous to consider how the separate parts of the
implementation will be composed to produce a full system. A modular ap-
proach will be useful as the components of the system present clear demar-
cations, with distinct program representations at each boundary between
components. A high-level overview of the system’s design is given in Fig-
ure 2.1.

Based on this proposed design, it makes sense to implement each phase
separately with well-defined data structures acting as the interface between
phases. Writing the project in this way means that once these data struc-
tures are defined, work can be carried out on different sections independently
(potentially using hand-coded stub data to provide valid input to phases if
necessary—for example, to allow for out-of-order development or unit test-
ing).

Source Code

Tokens

Abstract
Syntax Tree

Virtual
Machine Code

Output

Lex

Parse

Analyse

Generate Code

Execute

Figure 2.1: Data flow through the proposed system design

2.1.3 Required Algorithms and Techniques

In order to implement the project as described, some amount of background
knowledge and several key algorithms will be required. Some of this back-
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2.1. REQUIREMENTS ANALYSIS

ground knowledge will come from Tripos courses, while some will require
independent research.

Language Design In order to properly design a programming language,
consideration must be given to both the syntax and semantics of the
language.

In order to properly reason about and implement the semantics of the π-
calculus, knowledge from the Tripos courses Semantics of Programming
Languages and Topics in Concurrency will be necessary. Techniques
used will include the analysis of operational semantics of a language,
as well as the algebraic manipulation of process calculi.

Virtual Machine The implementation of the virtual machine will require
knowledge of how such machines are implemented in the real world —
this will partly require background research and investigation, as well
as some knowledge from the Tripos course Compiler Construction.

The scheduler is likely to be the most complex component of the vir-
tual machine. Implementing it will require strong working knowledge of
common problems faced when implementing concurrent systems (e.g.
deadlock, race conditions etc.), as well as general programming tech-
niques in such environments. The Tripos course Concurrent and Dis-
tributed Systems is the most relevant to this section.

Compiler Frontend The front end of a compiler is generally taken to en-
compass a lexer and a parser, which together convert textual source
code into an abstract syntax tree. The algorithms most often used for
this are described primarily in the Tripos course Compiler Construc-
tion.

While lexing is a conceptually simple task, a suitable parsing algorithm
will have to be selected based on the structure of the grammar given by
the language design. Multiple candidates are available, but some algo-
rithms place constraints on the grammar they parse, while others may
be equivalently useful for the language but more complex to implement.
It will therefore be necessary to choose an appropriate algorithm.

Code Generation The Tripos courses Compiler Construction and Opti-
mising Compilers both cover this topic in some detail. The design
of the virtual machine instruction set will inform this stage a great
deal, though the general technique is likely to remain similar whatever
instruction set is chosen.

7



2.2. LANGUAGE AND TECHNOLOGY EVALUATION

As a broad technique, instructions are likely to be generated by a pos-
torder traversal of the abstract syntax tree, possibly with alterations
or corrections made after further analysis.

2.2 Language and Technology Evaluation

The language Scala [15] was chosen as the implementation language for the
project for a number of reasons:

Type System The Scala type system is one of the language’s strongest
points. Full static type checking provides a non-trivial assurance of the
correctness of code (in comparison to a dynamically typed language),
while features such as traits, mixins and case classes allow for high level
concepts to be expressed naturally in the type system.

Standard Library Scala is compiled to run on the JVM1, and as such has
access to the entire Java standard library. In addition to this, Scala has
its own standard library that makes use of idiomatic language features.
The availability of high-quality standard library code means that less
time will be spent working on tasks not directly relevant to the project.

Multi-Paradigm Code written in Scala is not strictly constrained to a par-
ticular idiomatic style (compared to Haskell or Java, for example), and
so different modules may be written differently as appropriate [16].
For example, some parts of the project might be better suited to a
functional style, with others being more easily written with imperative
code. Being able to write code in this way is perhaps not ideologically
pure, but results in a flexible development process.

While there are other languages that match some of these benefits (e.g.
Haskell has a similarly strong type system, and the Python standard library
is perhaps as practically useful as Java’s), no language I evaluated matched
all of them while still being a stable language to develop a large project in.

Development tools were chosen based on their ease of use with Scala
code—the standout contender on this front was IntelliJ IDEA 15, an IDE
primarily designed for use with Java, but which has strong Scala support
from an official plugin. Beyond the IDE, the only major technologies used
were git (for source control, with BitBucket used as a remote repository host)
and LATEX (for typesetting documents).

1Java Virtual Machine

8



2.3. STARTING POINT

2.3 Starting Point

The project does not directly build on any other project, or on any domain-
specific code. The only third party code used in the implementation of the
project is that of the Java and Scala standard libraries, with all code specific
to the project being written by myself.

There exist other implementations of languages and instruction sets based
on the π-calculus (such as occam [12] and Pict [14]). While the project is
similar to these implementations in some respects, the scope of their features
is much greater than the time constraints for this project would allow. No
code or implementation strategy has been directly taken from any similar
projects.

2.4 Language Design

Before an implementation can be constructed, the language itself must be
designed. The primary criteria for this design phase were:

• Encompass the semantics of the π-calculus—anything expressible in the
π-calculus should be expressible in the language, but not necessarily
vice-versa (as it may be desirable to add features that aid practical
programming).

• Syntactically emulate the π-calculus to a reasonable extent, with con-
cessions made for readability and ease of writing code in the language.

• Add a language feature that allows for external code to be called in
some way, while still fitting into the semantics of the language and
feeling subjectively “natural” in the context of a program.

• Integrate data types of some kind beyond the pure names of the π-
calculus, while still preserving the core name-passing semantics.

2.4.1 The π-calculus

In order to create such a design, the π-calculus must be examined. The core
structure is very minimal—there are only six syntactic constructions that
can form a process. In this section I give a description of the semantics of
the π-calculus.

9



2.4. LANGUAGE DESIGN

Informal Description

The π-calculus is a process algebra—a set of algebraic laws that describe
the interactions between concurrent processes. These laws specify a transi-
tion relation (written →) that specifies when and how a process can reduce
into another. For some processes this relation is nondeterministic. A full
definition of the relation is given in Appendix D.

Data in the π-calculus is in the form of names, which represent both
messages themselves and the links across which messages are sent.

The only way in which concurrent processes can interact is through syn-
chronisation—if two processes perform complementary actions, they can
transition together to a new state. Information is exchanged here by a name
being passed from one process to the other.

π-calculus Grammar

The grammar of the π-calculus is given formally in Figure 2.2, with P defining
the abstract syntax of a π-calculus process, and x, y being names from some
set X.

P ::= x(y).P
| x〈y〉.P
| P |P
| (ν x)P
| !P
| nil

Figure 2.2: The π-calculus grammar

The productions of this grammar describe the operations possible in the
π-calculus:

Input Prefixing x(y).P
A process can accept a name on x, then continue as P with the received
name substituted for y .

Output Prefixing x〈y〉.P
A process can output the name y on x, then proceed as P.

Parallel Composition P | P
The two processes proceed in parallel, with their transition steps being
interleaved arbitrarily.

10



2.4. LANGUAGE DESIGN

Name Restriction (ν x)P
A name x is introduced with scope restricted to the process P.

Replication !P
As many copies of P as needed to synchronise with every other process
are run in parallel.

Nil Process nil
No transitions are possible from this process.

π-calculus Semantics

The semantics of the π-calculus are defined by the structure of processes
(Figure 2.2) together with the transition relation →. Transitions between
processes are defined up to structural congruence, an equivalence relation
between processes that identifies semantically identical process with differ-
ent grammatical structure. Capture-avoiding substitution of names is also
defined.

The most important rule in the transition relation is the synchronisation
rule that allows two concurrent processes to communicate:

x〈z〉.P | x(y).Q→ P | Q[z/y]

The left process performs an output, and the right process performs an
input (on the same name). The two processes can then both transition, with
Q having z substituted for y.

The full semantics of the π-calculus is given in Appendix D. Throughout
the rest of the dissertation, all π-calculus semantics used are with reference
to this full definition.

2.4.2 Core Features

Here I give a design for the concrete syntax of PCL, based on the π-calculus
syntax in Figure 2.2.

This language design incorporates a version of each π-calculus operation
in order that equivalent behaviour can be implemented. Examples of this
syntax for PCL are given in Listing 2.1. I write P for an arbitrary program
as defined by this syntax.
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1 in x(y).P

2 out x(y).P

3 ( P | P )

4 fresh x { P }

5 !( P )

6 end

Listing 2.1: Design for PCL syntax

The syntax fresh x { P } corresponds to the (ν x)P scope restriction
operator—x is a fresh name (i.e. it does not appear anywhere else in the
program) in the context P.

An example of a π-calculus process is:

P , (ν x)(x(y).y〈w〉.nil | x〈z〉.z(u).nil) (2.1)

This process P will reduce by the following sequence of transitions:

P → (ν x)((y〈w〉.nil)[z/y] | z(u).nil)

→ (ν x)(z〈w〉.nil | z(u).nil)

→ (ν x)(nil | nil[w/u])

→ (ν x)(nil | nil)
→ (ν x)(nil)

→ nil

A translation of P to PCL is given in Listing 2.2.

1 fresh x {

2 (

3 in x(y).

4 out y(w).

5 end

6 |

7 out x(z).

8 in z(u).

9 end

10 )

11 }

Listing 2.2: A simple process translated to PCL syntax

12
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This syntax is acceptable to read and write, and provides a useful starting
point for discussion of how best the language can be extended and formalised.

2.4.3 Names, Data and Variables

Concrete Data

The π-calculus maintains only a single type of data—names. While this is
theoretically adequate for performing arbitrary computation [7], it is concep-
tually very different to the way in which real-world programming languages
(even those fundamentally based on communicating processes) handle data.
If computation is restricted to only names, then any data a process operates
on must be defined only in terms of names.

It is for this reason that it is desirable to add some other types of data
to PCL, while still maintaining the core semantics based on synchronisation
and name passing between concurrent processes. However, within the scope
of this project, full support for the range of data types usually available
in programming languages (e.g. strings, arrays, floating point numbers or
structured types) will not be feasible to implement.

In place of a full range of data types, the proposed language will include
support for integer data and computation. The operations and syntax avail-
able for operating on such values will serve as an example upon which a richer
language and type system could be built.

The basic integer operations +, -, *, / should be incorporated into the
language in some form, as well as syntactic support for literal integer values.

Variables

Having concrete data in the form of integer values now presents an incompat-
ibility with the π-calculus model of pure names—how should integer values
be included into the name passing model in a way that allows it to remain
consistent with the π-calculus semantics?

The solution chosen is to have PCL depart from having only names. In-
stead, PCL will have two distinct data types—channels and integers. Chan-
nels can be seen as being analogous to names in the π-calculus—a link over
which data can be sent or received.

When writing a program in PCL, values of each of these types can be
introduced by a literal value. Elements of the channel type are identified by
a string (their “name”), and written in PCL syntax as @name.

Substitution as it is defined for the π-calculus is not practical to imple-
ment directly, as it would require rewriting of bytecode sequences during
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execution. This is not desirable, and so an alternative mechanism for achiev-
ing indirection is needed.

The solution chosen to deal with indirection is to add variables to PCL
that can store a single element of either type. These variables will be distin-
guished syntactically from channel literals by writing them in PCL syntax
as Name.

This design no longer matches the π-calculus directly, but it is still pos-
sible to translate π-calculus processes into PCL—details of this are given in
Table 4.1.

The language will not include explicit compile-time type checking for
variables; any errors that occur (in a program with valid syntax) will do so
at runtime. For example, an error will occur at runtime if the PCL expression
1 + V is executed while V contains a channel.

2.4.4 Extending the π-calculus

Arithmetic

Described in Section 2.4.3 is the inclusion of integers to the language as a
new data type. Naturally the language needs to be extended with opera-
tions on the integers—an obvious selection of operations is +,−, ∗, /, with /
representing truncated integer division.2

The language should be designed such that arbitrary combinations of
numeric literals, variables and operators can be combined into a valid arith-
metic expression. The language should respect the usual precedence rules
for evaluation, and should allow for valid parenthesization of expressions (for
disambiguation when reading, or for manual precedence assignment).

As the language allows expressions such as 1 / 0, it is possible that the
virtual machine will throw a runtime exception if such an expression is eval-
uated. This matches the behaviour of other language virtual machines such
as the JVM or CPython, and is an acceptable design choice.

The way in which arithmetic expressions are evaluated internally will
depend on the design of the virtual machine instruction set, though this
choice will not affect the externally observable behaviour of any program.

Value Binding

A mechanism for assigning values to variables is necessary in the extended
language.

2The fractional part of any division is discarded, e.g. 8/3 = 2.
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The language construct fresh X { ... } is such a mechanism—it intro-
duces a variable X with a limited scope, with the semantic assertion that X

is initially bound to a name unused anywhere else in the process (similarly
to (ν x)P).

A value-binding construct should behave similarly to fresh, but with
the value of the variable being specified manually instead of being generated
internally. The PCL syntax for value-binding is given in Listing 2.3.

1 let X = 0 {

2 let Y = 10 + X {

3 end

4 }

5 }.

6 out @a(X)

Listing 2.3: PCL value-binding syntax

Line 6 of Listing 2.3 represents a scope error—the variable X does not
exist outside of the outer scope. If the code is executed, then an error should
occur (possibly only at runtime, but this could in principle be checked at
compile time).

Conditional Execution

Some descriptions of the π-calculus add a conditional process structure

[x = y]P

that proceeds as P if x and y represent the same name. I have not included
this in my formal definition of the π-calculus, but as it represents a useful
control structure for programming I have included it in the language. The
PCL syntax for conditional checks is given in Listing 2.4.

15



2.4. LANGUAGE DESIGN

1 [1 = 0] {

2 end

3 }

4

5 let X = 1 {

6 [1 = X] {

7 end

8 }

9 }

Listing 2.4: PCL conditional test syntax

Conditional tests will not cause type errors in PCL; if two values of dif-
ferent types are compared, the result is always false. This is the only form of
conditional test—PCL has no “if–then–else” structure, or logical operations
other than equality testing.

External Code

The project specification requires some mechanism to call external code from
a PCL program. The most natural way to do this is to extend the idea of
send and receive actions to this external code in some way.

The chosen design for this feature is to mark a set of channels as being
external—if the program performs a send or receive action on one of these
channels, some external code is called and the process can proceed without
synchronisation.

If the external code were to be written in Scala, the code in Listing 2.5
gives an interface that external code would conform to—when a process per-
forms a receive action on an external channel, it should send back a datatype
representing either an integer or a channel identifier (and vice-versa). Us-
ing the type Either[Channel, Long] emulates dynamic typing for the data
being sent or received.

1 trait ExternalChannel {

2 def send(): Either[Channel , Long]

3 def receive(data: Either[Channel , Long])

4 }

Listing 2.5: Interface to external code
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Syntax for marking channels as external is given in Listing 2.6.

1 external @channel_name

Listing 2.6: PCL syntax for channels using external code

2.4.5 Summary

In this section I have presented an overview of the π-calculus and the way
in which it performs computation. From this I have given a design for a
language with syntax based on the π-calculus, but with additional features
to allow for more useful programming.

2.5 Virtual Machine Design

At a high level, the virtual machine will consist of multiple threads of ex-
ecution. These threads will be coordinated in order to implement synchro-
nisation between send and receive actions. In this section I describe the
execution model for one such thread, along with the strategy used to imple-
ment coordination between multiple threads.

2.5.1 Execution Model

A single thread of execution will execute a linear sequence of instructions,
updating its own internal state as it does so.

Instruction 0

Instruction 1

Instruction 2

...

Instruction n

PC

Figure 2.3: Instruction sequence with program counter.

The virtual machine will need to be able to compute arithmetic expres-
sions, make conditional jumps (i.e. for control flow arising from conditional
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tests or parallel composition), manage synchronisation between communicat-
ing processes, and handle indirection through variables in order to implement
the core semantics of the language described in Section 2.4.

It will be helpful to select a rich set of instructions. Designing a more
general, low-level instruction set would greatly increase the amount of work
done both at the design phase, and when implementing bytecode generation.
Within the scope of the project, using a rich instruction set rather than
a low-level one is an acceptable decision, as the core task of compiling to
linearised bytecode can still be achieved.

2.5.2 Concurrency

Concurrency in the virtual machine will be implemented by having a sched-
uler coordinate the execution of many independent threads of execution.
The platform-independent threading facilities provided by the Java standard
library can be used to implement this model, with virtual machine execution
threads being implemented by a single JVM thread.

There should be a rough correspondence between the executing JVM
threads and the collection of concurrent π-calculus processes in the formal
semantics (though this correspondence will not be exact, as the structure of
the program representation will change when compiling to linear bytecode).

Each individual thread of execution is independent of the others—all
coordination is done through the scheduler. Individual threads will be able
to use the Java wait and notify primitives to block and resume execution,
emulating π-calculus states where they have no transitions, and states in
which a transition becomes available.

18



Chapter 3

Implementation

In this chapter I detail the work that was undertaken during the implementa-
tion of the project. Full definitions for the language and virtual machine in-
struction set designed, and the π-calculus itself can be found in Appendix A,
Appendix B and Appendix D respectively.

After the sections on how the language and virtual machine instructions
were designed, the sections in this chapter are arranged in roughly the same
order as data passing through the application (i.e. beginning with program
text, and ending with an executing program and output).

3.1 Lexical Analysis

The first operation that is performed when we compile a program is to to-
kenise or “lex” it into a sequence of atomic elements (tokens) based on the
textual content of the file.

Lexing the program source performs a useful normalisation on the struc-
ture of the program (e.g. non-semantic whitespace is ignored), while also
acting as a first pass of error checking.

Source Code List of Tokens
Lex

Figure 3.1: Data transformation performed by the lexer

3.1.1 Token Definitions

To perform this lexical analysis, a formal definition of each token in the
language is needed. These definitions are given as a regular expression for
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each token in the language. Some example definitions are given in Table 3.1,
and the full lexical definition of the language can be found in Appendix A.1.2.
All regular expressions are in the format prescribed by the Java standard
library [17].

Token Definition

INT[n] ∧(−?[0− 9]+)(.∗)
CHANNEL[name] ∧@((? : [a− z]| )+)(.∗)
IN ∧in(.∗)

Table 3.1: Example definitions of lexical tokens

The token definitions share some common structural elements that fa-
cilitate a simple lexing algorithm. Each one begins with ∧ such that the
expression will only match at the beginning of a string, and each one ends
with (.∗), a capturing group for the remaining string after the matched token.
Additionally, the tokens that include associated data use another capturing
group to extract this data.

3.1.2 Lexing Algorithm

The algorithm used to lex a program text into a list of tokens is conceptu-
ally simple—we attempt to match each token definition in turn against the
program text, and if one succeeds we append the token to the list of tokens
matched so far, then recurse for the remaining string (using the capturing
group as defined above). An extract from the lexer source code is given in
Listing 3.1.

1 def lex(p: String , a: List[Token ]): List[Token] = {

2 eat(p) match {

3 case Some((t, r)) => tokenize(r, t::a)

4 case None => p match {

5 case "" => a reverse

6 case s =>

7 throw new LexException ()

8 }

9 }

10 }

Listing 3.1: Extract from the lexing algorithm
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In Listing 3.1, eat(p:String) is a function that attempts to apply each
token’s regular expression in turn, and returns the first one that matches
together with the remaining string (if one does match).

Lexing succeeds when there is no remaining source to lex. If no token
matches the remaining source, the program is malformed and an exception
is thrown.

3.1.3 Preprocessing

In Section 2.4.4 the PCL syntax for designating external channels was given.
The external @channel lines are not part of the lexical definition of the
language, and so they are preprocessed into a collection of channel names
before the lexer runs on the program itself.

The preprocessing performed at this step is comparatively simple com-
pared to the lexing algorithm itself, and a full specification for external

statements can be found in Appendix C.1.

3.2 Parsing

Once the source code has been tokenised, the next task is to parse the se-
quence of tokens into a structure that better represents the abstract syntax
of the program. Most commonly (and indeed in this implementation), this
structure is a recursively constructed tree.

Because the language syntax is minimal, I decided that the overhead of
incorporating a parser generator (e.g. YACC, bison etc.) into my project
would not be a useful strategy—writing a parser by hand would be simpler
and more illustrative. The type of parser selected is a recursive descent parser
for simplicity. Details of the algorithm used are given in Section 3.2.2.

Source Code Tokens Syntax Tree
Lex Parse

Figure 3.2: Data flow at the parsing stage

3.2.1 The Parse Tree

For simply structured languages, the construction of the parse tree will mirror
the way in which the grammar is constructed (the full grammar, along with
notational conventions for the language is given in Appendix A.2). In a
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general sense, clauses in the BNF grammar for generating a non-terminal
will each represent a constructor for a subtree of the parse tree.

Because the language includes extensions beyond the pure form of the π-
calculus, the grammar and matching parse tree designed are extended beyond
that of the π-calculus. Modifications are also made in order to support
recursive descent parsing.1

Arithmetic

The design of a formal grammar for arithmetic expressions is of little inter-
est in the context of this project, and so the full details are omitted—the
treatment of precedence and parenthesization are standard. The only non-
standard component is the production allowing a channel name to be an
expression, which serves to simplify the grammar in a number of places. The
grammar fragment pertaining to arithmetic is given in Figure 3.3.

AddOp ::= +

| -

MulOp ::= *

| /

Factor ::= var

| int

| ( Expression )

Term ::= Factor Term′

Term′ ::= MulOp Factor Term′

| E

Expression ::= Term Expression′

| channel

Expression′ ::= AddOp Term Expression′

| E

Figure 3.3: Grammar for arithmetic expressions

1Specifically, the factoring of left recursion from the näıve grammar.
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It is worth noting that the grammar has been factored to remove left
recursion—this requirement is discussed in Section 3.2.2.

Processes

Because of the way in which the language is based on the π-calculus, the
grammar for describing a language process is similar to the grammar given
in Figure 2.2, though with extensions representing the additional language
features. The language grammar for processes is given in Figure 3.4.

Name ::= var

| channel

Process ::= out Name ( Expression ) Process′

| in Name ( var ) Process′

| ( Process | Process )

| ! ( Process )

| [ Expression = Expression ] { Process } Process′
| let var = Expression { Process } Process′
| fresh var { Process } Process′
| end

Process′ ::= . Process Process′

| E

Figure 3.4: Grammar for language processes

Similarly to the grammar for arithmetic, left recursion occurs in the näıve
translation of the π-calculus grammar—this has been factored to give the
grammar in Figure 3.4. The grammar itself is not complicated; it extends
the π-calculus grammar with variable names and arithmetic literals where
they can be used, and adds productions for value binding and variable name
restriction.

3.2.2 Parsing Algorithm

As discussed previously, the easiest and simplest algorithm for parsing the
language grammar is recursive descent. Conceptually, a recursive descent
parser is an algorithm directly encoding the grammar of the language —
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functions are defined to match each kind of non-terminal symbol. These func-
tions “consume” terminal symbols (tokens) and recurse into other matching
functions, eventually returning a parsed representation of the program.

Listing 3.2 gives the implementation of a non-recursive matching func-
tion (for matching Name non-terminals, which can only expand to a single
terminal). In this function, we reach the base case of the recursive descent,
returning a subtree structure dependent on what the current token is. The
advance() method simply “consumes” a token and moves to the next one.

1 def matchName (): Result[Name] = {

2 currentToken () match {

3 case Some(VarName(vn)) =>

4 advance ()

5 Left(VariableName(vn))

6 case Some(ChannelName(cn)) =>

7 advance ()

8 Left(ChannelName(cn))

9

10 case _ =>

11 syntaxError ()

12 }

13 }

Listing 3.2: Matching function for Name non-terminals
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1 def matchExpression (): Result[Expression] = {

2 currentToken () match {

3 case Some(ChannelName(cn)) =>

4 advance ()

5 Left(ChannelExpression(ChannelName(cn)))

6 case Some(_) =>

7 val term = matchTerm ()

8 val aux = matchExpressionAux ()

9 (term , aux) match {

10 case (Left(t), Left(a)) =>

11 Left(TermAuxExpression(t, a))

12 case (Right(e), _) => Right(e)

13 case (_, Right(e)) => Right(e)

14 }

15 case _ => syntaxError ()

16 }

17 }

Listing 3.3: Matching function for Expression non-terminals

The recursive descent parser is implemented by creating a matching func-
tion for every non-terminal class in the grammar to be parsed. These func-
tions are individually responsible for implementing all the production rules
that can produce the relevant non-terminal, and for returning an appropriate
structure to represent the data they have parsed.

3.3 External Code

In this section I describe the implementation of a mechanism by which ex-
ternal code is called by programs written in PCL. External channels for PCL
are written as Scala classes that implement the interface given in Listing 3.4.

3.3.1 Class Loading

Because the project is written in Scala, it is possible to access and use the
Java standard library. This includes the ability to dynamically load compiled
.class files at runtime, with one major caveat—type checking information
is lost when using this method.
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Source Code Tokens

External
Names

Callable
Objects

Syntax Tree
Lex

Preprocess

Load

Parse

Figure 3.5: Data flow at the external code loading phase

1 trait ExternalChannel {

2 def send(): Either[Channel , Long]

3 def receive(data: Either[Channel , Long])

4 }

Listing 3.4: Interface to external code (repeated)

An object with the ExternalChannel trait (from Listing 3.4) can be
extracted from a loaded class file by using reflection and unsafe type casts.
This is because methods of dynamically loaded classes always have the return
type Any—to use these values elsewhere in the implementation, an unsafe cast
of the returned value to Either[Channel, Long] is necessary.

3.3.2 Implementation

The steps taken to load external code before a program is executed are:

1. For every external channel name identified by the preprocessing step
in Section 3.1.3, load a corresponding .class file from the directory
specified in Appendix C.1. If any do not exist, exit with an error.

2. Load the class files using the Java standard library, and use reflection
to extract references to the send and receive methods.

3. Cast the references to send and receive to their type as specified in
Listing 3.4. If this is not possible, exit with an error. The references
can then be used to construct type-safe objects (that have methods
that call send and receive). These objects are then stored in a map
from channel names to objects implementing ExternalChannel.

This map of channel names to objects implementing is then available to
the virtual machine during execution. The way in which the loaded code is
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executed is described along with other elements of the program interpretation
in Section 3.6. The exact syntax and search paths for compiled libraries are
given in Appendix C.1.

3.3.3 Problems and Improvements

The external code interface in the project serves primarily as a proof-of-
concept that such an interface is possible to implement. There are some
obvious issues with the strategy—the loader will simply fail at runtime if the
.class files are not present, or if the loaded class file does not satisfy the
interface. Additionally, the mechanism is insecure—arbitrary compiled Java
bytecode can be executed by programs in the language. Fixing these issues is
beyond the scope of the project; to do so would be possible, but not relevant
to the success criteria.

3.4 Instruction Set

This section gives the definition of a full instruction set for the virtual
machine—the algorithms used internally to implement the design are ad-
dressed in full in Sections 3.6.2 and 3.7. A full reference to the instruction
set is given in Appendix B.

In general, when referencing instructions in Appendix B, some shared
behaviour is assumed—any instruction that pops an item from the arithmetic
stack or looks up a variable name in the store will throw a runtime error if
the stack is empty, or the name is not in the store.

3.4.1 Arithmetic

The way in which the virtual machine is to handle arithmetic is one of the
less interesting parts of the design and implementation, and as such a sim-
ple design was implemented—a stack machine2 where operands are pushed
onto the stack, and the top of the stack is manipulated by operations. The
arithmetic operations are given in Appendix B.1.1.

3.4.2 Environment & Variables

Each virtual machine thread will maintain a data structure mapping vari-
able names to their corresponding values. An alternative approach would
be to implement some kind of register-based system, but because the virtual

2i.e. a direct translation of Reverse Polish Notation.
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machine is implemented in a managed language, the resulting complexity is
unnecessary.

The store instructions handle a number of different cases depending on
the type of data being assigned, as well as the target of the assignment. For
example, the PCL assignment let X = 0 corresponds to the STORE-INT in-
struction, while let Y = @c corresponds to STORE-CHANNEL. A full reference
to the store instructions is given in Appendix B.1.2.

3.4.3 Control Flow

The instruction set requires instructions to alter the way in which the pro-
gram counter moves through the instruction sequence. In particular, linear
flow of control may be deviated from by conditional execution, termination,
or execution of a parallel process. Examples of PCL code that causes non-
linear control flow are given in Listing 3.5.

1 [X = 0] { end }

2

3 ( out @x(0) | in @x(Y) )

Listing 3.5: Non-linear control flow in PCL code

The instructions for control flow are based on the value on top of the
stack—jumps can be made conditional on the top of the stack being either
zero or non-zero (JUMP-ZERO and JUMP-NON-ZERO). Comparison of two arith-
metic expressions is not encoded directly; instead each expression is evaluated
and a subtraction performed to determine equality. A full reference to control
flow instructions is given in Appendix B.1.3.

3.4.4 Synchronisation

A program can block if it reaches a state where it must either send or receive,
but no concurrent process is executing the dual action. When this happens
in the π-calculus, no further transitions can occur until a synchronisation is
available.

Based on this behaviour, the virtual machine instruction set includes
instructions that trigger this blocking and synchronisation (all are variants
of SEND or RECEIVE). The mechanisms by which virtual machine processes
will block and resume execution when necessary are given in Section 3.7.
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With these instructions, there is a high degree of repetition between in-
struction variants. This approach makes each individual instruction simpler
and more explicit in its intent than an overloaded equivalent would be. Each
instruction has a direct and an indirect variant—the direct variant has the
relevant channel name encoded in the instruction arguments, while the indi-
rect variant has a variable name that is used to look up the relevant channel.3

A full reference to the instructions supporting synchronisation between
two concurrent threads of execution is given in Appendix B.1.4 (for example,
RECEIVE-DIRECT or SEND-INT-INDIRECT).

3.5 Code Generation

Given an abstract syntax tree, the next task of the compiler is to perform
code generation4 to transform the tree structure into a linear sequence of
bytecode instructions ready for execution. This can be achieved by traversing
the structure of the tree and emitting code based on a set of recursively
defined rules. In this section I describe the mechanism by which bytecode is
generated using this strategy.

Source Code Tokens

External
Names

Callable
Objects

Syntax Tree

Bytecode

Lex

Preprocess

Load

Parse

Generation

Figure 3.6: Data flow at the code generation phase

3.5.1 Example Generation Rules

In general, the pattern followed by the code generator is of a recursive traver-
sal of the abstract syntax tree. Rules generate bytecode with a fixed format
that contains “holes”—these holes are then filled compositionally by the gen-
erated bytecode from subphrases.

The full definition of most of the code generation rules includes a lot of
pattern matching on subtree structures to determine how code is generated,

3c.f. the difference between add r1,r2 and addi r1,#n in ARM assembler.
4For more complex languages, there may well be additional transformations or analyses

performed as intermediate steps before code generation—the scope of this project is small
enough that code generation can be performed directly from the syntax tree.
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and as such the example rules given here are slightly simplified. For brevity,
not all code generation rules are given.

Let Block

An illustrative example is that of the let Var = Expr { Proc } construct5

from the grammar in Figure 3.4. The structure for this construct is similar to
the tree in Figure 3.7 (arbitrary subtrees or supertrees are written as “...”).

...

...Let

Proc

.........

Expr

......

Name

Figure 3.7: Syntax tree fragment for a let-binding

From Figure 3.7, the subtrees that need to have their code generated are:

Name is the variable name to which a value is being bound.

Expr is the expression that will evaluate to the value to be assigned.

Proc is the process to execute with the newly bound variable in scope.

I write JPK for the bytecode generated from the PCL program (or program
fragment) P. There are three cases to consider when generating code for
Expr—it can be an arithmetic expression that pushes a value onto the stack,
a channel literal or a variable. The specialised bytecode generated for each of
these different cases is given in Table 3.2. Each column of the table contains
the sequence of instructions generated for a particular specialisation of the
assignment. The cases do share some common structure—each one executes
some code to set the value of a variable, then executes Proc, then deletes the
variable assigned (to enforce variable scoping).

Parallel Process

A process that performs parallel composition serves as a good example of
how control flow can be performed using the virtual machine architecture.
The syntax tree we are aiming to generate code for is given in Figure 3.8.

5Analogous to ML-style let binding of variables.
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Let-Block

Arithmetic Channel Variable

JExprK STORE-CHANNEL[chan,name] COPY[expr,name]

STORE-INT[name] JProcK JProcK
JProcK DELETE[name] DELETE[name]

DELETE[name] JNextK JNextK
JNextK

Table 3.2: Generated bytecode for let-binding of variables

...

Parallel

RightProc

......

LeftProc

.........

Figure 3.8: Abstract syntax tree fragment for parallel composition

Because the generated code will perform control flow, labels are needed
to allow for jumping—the code generator provides a mechanism by which
globally unique labels can be generated as needed. For clarity, the labels
used in this example are `1, `2, `3 etc. in sequence as needed. The code
generated for this syntax tree fragment is given in Table 3.3.

The code layout defines two regions demarcated by LABEL and END instructions—
the SPAWN instructions then direct control flow concurrently into these re-
gions. The “parent” thread of execution then terminates (the END instruc-
tion causes the executing thread to immediately terminate). Note that for
symmetry and ease of understanding, the generated code performs an unnec-
essary SPAWN instruction—the code could be generated such that the parent
thread spawns from `1, then executes RightProc itself. The behaviour of the
generated code in Table 3.3 is the same as this version, though slightly less
efficient.

3.6 Interpretation

In this section I describe the implementation of the interpreter, and how a
compiled sequence of bytecode instructions can be executed. This section
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Parallel Composition

SPAWN[`1]
SPAWN[`2]

END

LABEL[`1]
JLeftProcK

END

LABEL[`2]
JRightProcK

END

Table 3.3: Generated bytecode for parallel composition of processes

deals only with a single thread of execution—the way in which parallelism
and concurrent execution is implemented is described in Section 3.7.

Source Code Tokens

External
Names

Callable
Objects

Syntax Tree

Bytecode

IO

Lex

Preprocess

Load

Parse

Generation

Call

Return
Execution

Figure 3.9: Data flow at the execution phase

In Figure 3.9, the full data flow diagram can be seen—using the external
code interface, some bytecode instructions may result in a call to external
code, then a return to the bytecode (possibly with an associated value). The
diagram also encodes the fact that the externally loaded code may have side
effects (e.g. arbitrary input and output). These side effects may affect the
values sent over the external code’s interface.

3.6.1 Core Algorithm & Interpreter State

The code generation phase generates a sequence of bytecode instructions.
Program execution is then implemented by iterating through the sequence

32



3.6. INTERPRETATION

of instructions, updating the interpreter state and performing other actions
as necessary.

The state that is stored by an interpreter is:

Program Counter is the the current index into the instruction sequence.

Environment stores a mapping from variable names to their respective
values. As instructions are executed by an interpreter thread, the state
of this mapping changes.

Label Map stores a mapping from label names to program indices to allow
for jumping and spawning by name. It does not change as the program
executes.

The label map for a program is extracted directly from the bytecode by
iterating through the sequence, storing a new map entry every time a LABEL

instruction is reached.
The program counter and environment are local to a single interpreter

instance (i.e. they do not act as shared memory for cross-thread communi-
cation). The behaviour of each instruction (as described in Section 3.4) is
encoded in a lookup table.

The core interpreter algorithm can therefore be described by the following
steps (at the beginning of execution, the environment is empty, the program
counter is 0, and the label map has been initialised):

1. Look up the current instruction in the behaviour lookup table to get a
function. This function can be executed to update the interpreter state
as appropriate.

2. Execute this function with any necessary parameters (e.g. variable
names).

3. Update the environment and program counter if necessary.

4. Repeat if execution was not halted by an END instruction.

3.6.2 Replication Strategy

One π-calculus construct requires special treatment by the virtual machine—
the replication operator !P creates as many copies of the process P as neces-
sary. Any number of parallel processes can synchronise with the replicated
process. The completely näıve solution is to repeatedly spawn the replicated
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process, but this fails when threads “build up”—the system will run out of
memory.

The solution chosen for the virtual machine is to allow for the number
of active threads to increase to a fixed bound—at this level, any blocked
threads with identical blocking conditions are pruned down such that only
one remains. The mechanism that allows this is detailed in Section 3.7, along
with a full definition of blocking conditions.

Alternative options that would be easier to implement for different vir-
tual machine designs include a lazy model, where replicated threads are only
spawned when necessary—this approach would be a possible efficiency im-
provement to the interpreter, but would require a different interpreter and
instruction set design. As such this approach was not implemented.

3.7 Scheduling and Multithreading

In this section I describe the implementation of the scheduler—the com-
ponent of the system that manages concurrent execution of multiple inter-
preters. In particular, the concurrency and shared data model (based on the
Java standard threading library) that allows multiple interpreters to synchro-
nise is described.

3.7.1 Scheduler

Each thread of execution as described in Section 3.6 is independent of all the
others, and as such a mechanism that allows them to communicate with each
other is needed. The core behaviours required from this mechanism are:

• Allow individual interpreters to block when they execute a SEND- or
RECEIVE- instruction.

• When a matched pair of SEND- and RECEIVE- instructions are exe-
cuted by concurrent interpreters, allow the two interpreters involved to
resume their execution.

To achieve these goals, I implemented a global scheduler object that be-
comes the main entry point for bytecode execution—when a program is com-
piled, the bytecode is passed to the scheduler, which spawns an interpreter
thread at the start of the bytecode.

The virtual machine SPAWN instruction can therefore be implemented by
having interpreters call a method on the scheduler. This method will spawn
another interpreter at a given index into the bytecode. The END instruction
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can be implemented similarly—the thread notifies the scheduler that it is
terminating, then terminates.

It is also necessary for the scheduler to keep track of all the currently ex-
ecuting interpreters—it does this by adding each interpreter object it creates
to a collection, and deleting them when they execute an END instruction.

3.7.2 Synchronisation

In this section I describe the implementation of synchronisation between
two concurrent threads of execution (i.e. how the scheduler unblocks blocked
threads).

Before synchronisation can be implemented, an implementation of block-
ing and resumption for interpreters needs to be introduced—a simple and
effective way to do this is to have threads call their Scala wait() method
when they execute a blocking instruction (any RECEIVE variant), and to have
the scheduler call (again in Scala) t.notifyAll() when resuming the thread
t.

In order to allow for synchronisation between interpreter threads, the
blocking action for each interpreter should be stored along with the inter-
preter itself in the scheduler’s collection (if one exists). When an interpreter
blocks, it registers its blocking action with the scheduler, then suspends itself
as described above.

The implementation used for the scheduler is in fact partly a näıve one—
it has blocking instructions be restricted to RECEIVE instruction variants,
and has SEND variants cause a loop on the interpreter thread. This loop
iterates through the collection of interpreters to see if any are blocked on the
corresponding action—if they are, their notifyAll() method is called and
the sent value passed to them. This ends the loop and allows the sending
interpreter to resume.

This implementation is somewhat näıve—the sending thread enters a busy
loop, which is an inefficient way of solving the problem. However, the correct
semantics are achieved by using this method despite the inefficiencies. A
more prudent strategy would be to have all send and receive actions block
the interpreter, and have the scheduler insert these actions into a collection.
A check for matching pairs of actions could then be performed as new actions
arrive. Because efficiency is not a primary concern of the project, and the
desired semantics are met by the näıve version, this improvement was not
implemented.
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3.7.3 Treatment of Nondeterminism

The nondeterministic choice of an execution path is at the core of how the π-
calculus executes—in this subsection I discuss the way in which the scheduler
makes nondeterministic decisions of this kind.

Because any choice of execution path at a given choice point is valid in the
π-calculus semantics, essentially any strategy can be used to choose a path
— even seemingly “incorrect” ones (e.g. always choose a certain direction).
However, such a strategy will not provide a good illustration of how a program
in the language works. That is, it is desirable to pick a strategy that provides
a representative sample of the possible choices.

In fact, this strategy is simple to implement—the nondeterminism that
arises from the interleaving of instructions between different threads is suf-
ficient to provide an acceptable sampling. In other words, the responsibility
for nondeterministic choice is pushed down the implementation stack into
the Java threading library and how it enforces context switches. In practice
this is an acceptable decision—there is no way to reliably predict the inter-
leaving of Java threads. A possible improvement to the project would be
to implement some way of forcing the scheduler to resolve nondeterministic
choices in a particular pattern.

3.8 User Interface

A command-line user interface for the compiler was implemented. The in-
terface allows the user to invoke the compiler on a PCL source file, then run
the compiled program. It also optionally gives debug output.

Assuming the executable is available on the system path as pcl, the
compiler can be invoked on a source file source.pcl as:

$ pcl source.pcl [--dump] [--trace]

The --dump flag has the compiler print the internal representation (list of
tokens, parse tree and generated bytecode) of the program as it is compiled.
The --trace flag causes each interpreter thread to print the instructions that
it executes—this gives an insight into how processes are interleaved during
execution. A full reference to the usage of the executable program is given
in Appendix C.
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3.9 Summary

From the language and virtual machine designs given in Chapter 2, I have
presented the implementation of a compiler that can transform a program
written in this language into a sequence of bytecode instructions for the
virtual machine.

Additionally, I have given the execution semantics of a single virtual
machine interpreter that can execute a sequential program of bytecode in-
structions. Based on this single-thread design, I have described the imple-
mentation of a scheduling mechanism that allows multiple interpreters to
execute concurrently and synchronise with each other. Finally, I described a
command-line user interface to the compiler.
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Chapter 4

Evaluation

In this chapter I discuss the strategies and methods used to evaluate the
success of the project. The rationale behind these methods will be explained,
and the results from the evaluation presented. Possible improvements to the
project and evaluation strategy will also be examined.

4.1 Evaluation Strategy

In this section I describe a strategy to evaluate the project with respect to
the success criteria laid out in the original project proposal (included at the
end of the dissertation).

4.1.1 Success Criteria

The original proposal stated that the project would be a success if the fol-
lowing criteria are met:

• To be able to demonstrate the compilation of a suite of programs that
demonstrate the capabilities of my language.

• To be able to demonstrate the execution of such programs by the virtual
machine that I implement.

• My implementation will be judged as a success if these programs are
shown to be behaviourally equivalent to the corresponding process in
the π-calculus.
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4.1.2 Compiler and Runtime Demonstration

With reference to the success criteria given above, the first two criteria specify
that a demonstration of some kind is provided. As summarised in Section 3.8,
the --dump and --trace command-line arguments can be used to print the
internal program representations1 and execution trace respectively.

Using these features I demonstrate how the compiler transforms the source
code and executes the compiled program. A representative output is given
in Listing 4.1.

$ cat input.pcl

external @stdio

in @stdio(Input).

out @stdio(Input)

$ pcl input.pcl --dump --trace

Tokens:

List(

In(),

ChannelName(stdio),

OpenBracket (),

VarName(Input),

CloseBracket (),

Sequential (),

Out(),

ChannelName(stdio),

OpenBracket (),

VarName(Input),

CloseBracket ()

)

Parse Tree:

ProcessStart(

InProcess(

ChannelName(stdio),

VariableName(Input),

SequentialProcessAux(

OutProcess(

ChannelName(stdio),

1List of tokens, abstract syntax tree and bytecode listing.
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TermAuxExpression(

FactorAuxTerm(

VariableFactor(

VariableName(Input)

),

EmptyTermAux ()

),

EmptyExpressionAux ()

),

EmptyProcessAux ()

),

EmptyProcessAux ()

)

)

)

Bytecode:

1: ReceiveDirect(Channel(stdio),Variable(Input))

2: SendVariableDirect(Channel(stdio),Variable(Input ))

3: End()

Thread 0: ReceiveDirect(

Channel(stdio),Variable(Input ))

> a

Thread 0: SendVariableDirect(

Channel(stdio),Variable(Input ))

a

Thread 0: End()

$

Listing 4.1: Example debug output

The program input.pcl reads an input from the user on standard input
(this is the side effect associated with receiving from @stdio), then prints it
back to standard output. Larger example programs produce debug output
that is much too large to be included here.

The command-line interface to the compiler and runtime can also be used
to demonstrate invalid programs being faulted. Listing 4.2 shows an example
program with invalid syntax (there is no . between the first and second lines):
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1 in @x(Y)

2 out @x(0)

Listing 4.2: Example program with a syntax error (syntaxerr.pcl)

The compiler error is given in Listing 4.3 below. The usability of error
messages given by the compiler was not an implementation priority, and so
error messages can be somewhat unhelpful.

$ pcl syntaxerr.pcl

Parse Error: tokens remain at end of parse.

Listing 4.3: Compiler output for a syntax error

As well as the static information, the debug dump in Listing 4.1 contains
an instruction-by-instruction execution log of the program. For determinis-
tic programs, this simply mirrors the bytecode listing; for nondeterministic
programs it can be used to observe the interleaving of interpreter threads.

Using the debug output options made available by the compiler, I am able
to demonstrate compilation and execution of arbitrary well-formed programs
in the language, therefore meeting the first two success criteria. The strategy
for evaluating the first two criteria is to provide compiler output for valid
programs to demonstrate how internal representations are transformed, and
to provide execution logs of these compiled programs.

4.1.3 Correspondence With the π-calculus

While the first two success criteria are satisfied by a demonstration of the
compiler’s debug output mode for a variety of different programs, the third
criterion (correspondence with the abstract semantics of the π-calculus) is
more subtle to define, and therefore harder to test and evaluate properly.

Providing a formal proof of correspondence with the π-calculus is unfortu-
nately beyond the scope of the project. To demonstrate the correspondence
with the π-calculus, I will instead provide a syntactic embedding of the cal-
culus in PCL. Using this embedding, I show transition derivations for process
expressions, then provide execution logs of the corresponding PCL programs
that demonstrate equivalence.

There are some subtleties to consider with this approach. The first is that
the π-calculus has no explicit mechanism to denote external behaviour, and
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so such a mechanism would have to be added to the transition semantics of
the calculus in order to reason about programs that have side effects.

The second subtlety is that execution of a program on the virtual machine
is nondeterministic—it may produce different effects each time it is executed.
To account for this, we will need to consider all the possible transition paths
of the π-calculus programs we use, as well as providing execution logs that
give evidence for each possible transition path.

Finally, there are many different programs that produce the same external
effects—while still not a formal method of verification, it will be useful to
create programs representing each step of a process’ transition sequence.
These reduced programs can all be checked against the abstract semantics
to provide a model for the full transition / execution correspondence.

The third success criterion will be achieved if I am able to demonstrate
an translation of the π-calculus to PCL, such that the techniques described
above can be used to show correspondence over all the syntactic categories
and transition rules of the π-calculus.

4.2 Results & Analysis

4.2.1 Compiler & Execution Demonstration

The first two success criteria (demonstration of the compiler and interpreter)
can be demonstrated by use of the compiler flags as described in Section 4.1.2.
The strategy for evaluating these criteria has already been described in
detail—a full set of examples demonstrating compilation and execution of
a variety of programs can be found in Appendix E.

4.2.2 π-calculus Correspondence

In this section I will give a mapping from π-calculus processes to PCL pro-
grams, along with a method for testing the behavioural correspondence be-
tween a process and a program, such that the third success criterion (corre-
spondence with the π-calculus semantics) can be demonstrated.

π-calculus Embedding

Here I present an embedding of the π-calculus syntactic terms into the defi-
nition of the language. In Section 2.4 I gave an informal motivation for the
syntactic design of my language, based on the grammatical classes of the
π-calculus (fully defined in Section 2.4.1).
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To demonstrate this embedding, I will provide a complete mapping of
any π-calculus process P to a PCL program C(P ). The mapping is specified
fully in Table 4.1. As well as this mapping for processes, each name e ∈ E
maps to an initial line external @e. Note that because the PCL let syntax
is an additional programming convenience, no π-calculus process maps to a
PCL program containing a let-binding.

π-calculus Process 7→ PCL Program

x(y).P where x bound 7→ in X(Y).C(P)

x(y).P where x free 7→ in @x(Y).C(P)

x〈y〉.P where x, y bound 7→ out X(Y).C(P)

x〈y〉.P where x, y free 7→ out @x(@y).C(P)

x〈y〉.P where x bound, y free 7→ out X(@y).C(P)

x〈y〉.P where x free, y bound 7→ out @x(Y).C(P)

P | Q 7→ ( C(P) | C(Q) )

(ν x)P 7→ fresh X { C(P) }

!P 7→ !( C(P) )

nil 7→ end

Table 4.1: Translation of the π-calculus to PCL

Note that because of the difference between π-calculus names and lan-
guage names (atoms and variables), a number of different cases to handle free
and bound names are required. If a name is bound in a π-calculus process,
it maps to a PCL variable, and if it is free, it maps to a PCL channel literal.

Using the embedding given, there is therefore an algorithmic method for
converting a π-calculus process into a language program. Additionally, well-
formed PCL programs can be mapped back into the π-calculus.

Extended π-calculus Semantics

As described in Section 4.1.3, it will be necessary to provide a slightly ex-
tended semantics for the π-calculus that allows for external actions to be
reasoned about. Based on the embedding described above, an external ac-

43



4.2. RESULTS & ANALYSIS

tion can only occur when an in or an out statement is made on a designated
external channel. These channels can only exist in a program if they are
declared as such at the beginning of the program. To relate these channel
names back to the abstract semantics, we will associate a set E of external
channel names with every π-calculus process P . Names in E are treated as
free names when converting a π-calculus process to a PCL program.

The transition relation for the π-calculus is modified to reference E when
necessary. Firstly a new rule is added that allows a process to undergo a
labelled transition if it acts on a name in E:

x(y).P
x(y)−−→ P if x ∈ E

x〈y〉.P x〈y〉−−→ P if x ∈ E

This models the way in which PCL programs can proceed without ex-
plicit synchronisation. Additionally, synchronisation on external channels is
prohibited by modifying the existing transition relation from the π-calculus:

x〈y〉.P | x(z).Q→ P | Q[y/z] if x /∈ E

Informally, these modifications mean that communication on an external
channel name must proceed only by the corresponding external action. When
discussing the correspondence in subsequent sections, external actions as
described above will be identified with the particular side effects of calling
given external code (as described in Appendix C.1). Generally this will be
the @stdio channel used to read from standard input and write to standard
output.

Representative Example

Given the embedding in Table 4.1 and the modified operational semantics
above, it is now possible to demonstrate a correspondence between the lan-
guage and the π-calculus. This is done by constructing processes in the
π-calculus, deriving their transition sequence, then observing the behaviour
of the corresponding program in the concrete language (for each process in
the transition sequence).

For brevity, only one representative example will be included in this sec-
tion to illustrate the method of demonstration. Further examples using the
same style of demonstration are included in Appendix E.
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The first example of correspondence demonstrates synchronisation be-
tween parallel processes, and serves to illustrate the strategy used for the
demonstration. We define:

E , {stdio}
P , x(y).stdio〈y〉.nil | x〈z〉.nil

P synchronises on x, then performs an external output action on stdio.
This is formalised by demonstrating the transition sequence for P :

P , x(y).stdio〈y〉.nil | x〈z〉.nil
→ stdio〈y〉.nil[z/y] | nil
→ stdio〈z〉.nil | nil
stdio〈z〉−−−−→ nil | nil
→ nil

The PCL program corresponding to P is given in Listing 4.4.

1 external @stdio

2

3 (

4 in @x(Y).out @stdio(Y).end

5 |

6 out @x(@z).end

7 )

Listing 4.4: Example demonstrating the correspondence between the π-
calculus and PCL

Note that in the transition sequence for P , a single labelled transition
stdio〈z〉 occurs. Transitions of this kind are identified with the external side
effect “the string z is printed to the console”. An execution log for the
program in Listing 4.4 is given in Listing 4.5.
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$ cat simple.pcl

external @stdio

(

in @x(Y).out @stdio(Y).end

|

out @x(@z).end

)

$ pcl simple.pcl

z

Listing 4.5: Output log an example of the correspondence between the π-
calculus and PCL

As described previously, it is possible to encode the process in the lan-
guage after it has taken on transition step, still keeping the same semantics.
This is demonstrated in Listing 4.6. Note that for simple-2.pcl, the re-
duction sequence no longer includes the stdio〈z〉 action, and so no externally
observable behaviour is seen. In these examples, simple-[n].pcl is the pro-
gram corresponding to the n-step reduced version of the process that mapped
to simple.pcl.
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$ cat simple -1. pcl

external @stdio

(

out @stdio(@z).end

|

end

)

$ pcl simple -1. pcl

z

$ cat simple -2. pcl

external @stdio

(

end

|

end

)

$ pcl simple -2. pcl

$

Listing 4.6: Output logs for a reduced process

The full set of demonstrative examples is available in Appendix E, with
each example following the same format as described here—a π-calculus pro-
cess is mapped to a language program, then compared at each reduction step
to the behaviour of the corresponding program.

4.3 Interpreting the Execution Logs

In this section I summarise the larger example programs and demonstrations
found in Appendix E. As initially laid out in the the project proposal, the
three types of demonstration program that would be required are:

• Behavioural correspondence by comparison of program behaviour with
the π-calculus semantics.

• Some implementations of numerical algorithms to show the language
being used for practical programming tasks.

47



4.3. INTERPRETING THE EXECUTION LOGS

• A sample encoding of a data structure—the ones given by Milner in his
original text on the π-calculus were cited as possibilities.

4.3.1 Behavioural Correspondence

The first section of Appendix E contains a number of demonstrations of
simple execution semantics. The demonstrations are broken down by the
rules of the transition relation as defined in Appendix D.

Nondeterminism demonstrates the possibility for nondeterministic execu-
tion ordering in PCL. A π-calculus process with two possible execu-
tion paths is given, and execution logs for the corresponding program
(par.pcl) provide evidence that both paths may occur during execu-
tion. Formal step-by-step derivations of possible behaviours are given
for this example (in the same way as for simple.pcl above). Addi-
tionally, full debug output is provided to demonstrate the compiler’s
internal representations and the virtual machine’s execution paths.

Restriction demonstrates execution proceeding under a restriction. This
example (res.pcl and nres.pcl) is less complex than par.pcl as it is
deterministic, and so only a single reduction sequence can be observed.
Similarly, full compiler and runtime debug output is given.

Congruence collects a number of smaller examples (assocl.pcl, assocr.pcl,
xy.pcl, yx.pcl, resn.pcl, scope.pcl and scopeext.pcl) that demon-
strate each of the laws of structural congruence. Each rule is demon-
strated by giving two structurally congruent processes (except for reverse.pcl,
which is structurally congruent to par.pcl), along with the correspond-
ing PCL programs. Execution logs are provided for these programs to
demonstrate that they do in fact exhibit equivalent behaviour.

Together this set of examples provides a strong circumstancial demonstra-
tion that the semantics of the π-calculus transition relation are implemented
correctly by the language, therefore meeting the first success criterion.

4.3.2 Algorithms

The second section contains implementations of several useful numerical al-
gorithms and functions. Implemented are:

• Sign function

• Modulus function
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• Exponentiation

• Greatest Common Divisor

• Fibonacci Numbers

Each of these algorithms is given as a language program together with a
reference implementation written in Python.2 For each algorithm, execution
logs of the language program are compared to the reference implementation
to test correctness on well-formed inputs.

These algorithms give evidence that the language is capable of perform-
ing useful numerical computation in a potentially recursive way, therefore
meeting the second success criterion.

4.3.3 Data Structure

The final section of Appendix E gives an encoding of the Church numerals in
the language, using a similar style to the numerical algorithms for encoding
functions (i.e. as infinitely replicated processes that accept arguments via
input prefixing).

By giving such an encoding as an example of how λ-terms might be
encoded in the language, the third success criterion for this section is met.

4.4 Possible Improvements

While I have demonstrated that the project does in fact meet all three of the
success criteria laid out in the original project proposal, there are several ways
in which improvements could be made (but were not possible to incorporate
due to time and scope constraints).

4.4.1 Animation

An alternative method for demonstrating the “execution” of a language or
calculus based on an operational semantics is to animate it by encoding the
transition rules directly. In [18], Pieter H. Hartel describes latos, a tool that
can automate the general creation of such animators.

This method would provide an easier way to reason about the corre-
spondence between the π-calculus and implementation—the semantic gap
between an animating interpreter and the π-calculus is much smaller than

2Chosen for clarity of expression for these simple examples.
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between a bytecode interpreter (such as the one implemented in this project)
and the π-calculus.

An animating interpreter with a proven correspondence to the π-calculus
could then be used to automate testing of a bytecode compiler and interpreter
(if both used the same internal representation).

4.4.2 Programming Features

Because the language designed is so close to the π-calculus, it lacks many
features included in mainstream programming languages, such as additional
concrete data types or a way of defining modules of reusable code. Incorpo-
rating these features into the language would be possible (perhaps requiring
some modifications to the virtual machine architecture)—the resulting lan-
guage would then be closer to occam-pi or pict. A simple improvement that
would make a big difference to the ease of programming would be to im-
plement the polyadic π-calculus — allowing processes to send and receive
arbitrary sized tuples of elements.

Additionally, improving the efficiency of the implementation would be an
essential goal if the language were to be made into a more usable, general-
purpose tool.

4.5 Summary

In this chapter I gave demonstrations of the compiler and virtual machine
debug output that allow the compilation and execution of a program to be
inspected.

I also gave an example of how language behaviour can be compared to
π-calculus semantics by extending the semantics of the π-calculus to allow
for externally observable behaviour.

Additionally, I showed informally that the implementation correctly matches
the π-calculus semantics, by giving a suite of programs meeting the criteria
set out in the project proposal. These programs collectively provide strong
circumstantial evidence that the implementation is correct with regard to the
π-calculus semantics, and is capable of useful computation using its extended
functionality.
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Chapter 5

Conclusion

The final implementation of the project meets the success criteria specified in
the initial project proposal, and the goals for functionality, work undertaken
and time plans were met.

The characteristics and semantics of the π-calculus were examined in de-
tail with respect to the design of a concrete programming language based on
it. A language (PCL) was designed, with its syntax and semantics specified
to match those of the π-calculus closely. Additionally, some extensions to
facilitate general-purpose programming were added to PCL.

A virtual-machine instruction set and corresponding execution semantics
were designed to support execution of concurrent programs—in particular,
concurrent programs that share data via synchronisation between processes.

The language design and virtual machine were brought together by a com-
piler that transforms source files written in the language into linear sequences
of bytecode instructions. Demonstrations of the internal functionality of this
compiler were made available through the use of command-line arguments.

An extension to the π-calculus semantics that allows for the encoding
of side-effects was constructed. This extension was used to demonstrate a
behavioural correspondence between the π-calculus and equivalent programs
written in PCL.

An interesting approach not taken by the project is to provide an animat-
ing interpreter for the operational semantics—future work might well include
an implementation of such an interpreter to improve the standard of proof
when verifying compliance with the π-calculus semantics. Other areas that
could be examined might also involve improvements to the general-purpose
usability of the language and runtime, such as adding more data types or
improving performance.
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Appendix A

Language Specification

A.1 Lexical Format

A.1.1 Text Encoding

Programs in the language are composed only of ASCII-encoded text. Any
program text lying outside of the ASCII space will be considered invalid and
result in a compilation error.

A.1.2 Tokens

All tokens are defined using the Java SE 7 regular expression syntax [17].

Token Definition

VAR[name] ∧([A− Z][a− z]∗)(.∗)
CHAN[name] ∧@((? : [a− z]| )+)(.∗)
INT[n] ∧(−?[0− 9]+)(.∗)
OPERATOR[op] ∧(\+ | − |\ ∗ |\/)(.∗)
IN ∧in(.∗)
OUT ∧out(.∗)
LET ∧let(.∗)
PARALLEL ∧\|(.∗)
SEQUENCE ∧\.(.∗)
END ∧end(.∗)
REPLICATE ∧!(.∗)
OPENB ∧\((.∗)
CLOSEB ∧\)(.∗)
OPENSB ∧\[(.∗)
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A.2. GRAMMAR

CLOSESB ∧\](.∗)
OPENCB ∧\{(.∗)
CLOSECB ∧\}(.∗)
EQUALS ∧ = (.∗)
FRESH ∧fresh(.∗)

A.1.3 External Channels

A program’s source may be preceded by zero or more external channel mark-
ers. These markers indicate to the virtual machine which channels link to
external code, but are not considered to be a part of the program text (i.e.
the data given to the lexer to produce a list of tokens).

External channel markers will be preprocessed before lexing. The format
of each individual marker as a regular expression is (where CHAN[name] is the
regular expression for a channel identifier given in A.1.2):

∧external CHAN[name]$

Each of these markers must occupy a distinct line in the source file, with
all markers coming before the beginning of the program itself. There may be
blank lines between markers, and between the final marker and the program.

A.2 Grammar

In this section I describe the grammar of the language as used in the parser
and abstract syntax tree. The grammar is given in Backus-Naur form,
with terminal symbols being styled as “terminal” (including all punctuation
marks), and nonterminals as “Nonterminal”. The terminal symbols var and
channel have a string associated with them (respresenting the variable or
channel name, respectively), and the terminal int has an integer associated
similarly.

For clarity, the text corresponding to a token (terminal symbol) in this
grammar is given instead of the name of the token. Given formally, an
example production might be:

OUT Name OPENB Expression CLOSEB Process′

A.2.1 Definition
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A.2. GRAMMAR

Start ::= Process

Name ::= var

| channel

AddOp ::= +

| -

MulOp ::= *

| /

Factor ::= var

| int

| ( Expression )

Term ::= Factor Term′

Term′ ::= MulOp Factor Term′

| E

Expression ::= Term Expression′

| channel

Expression′ ::= AddOp Term Expression′

| E

Process ::= out Name ( Expression ) Process′

| in Name ( var ) Process′

| ( Process | Process )

| ! ( Process )

| [ Expression = Expression ] { Process } Process′
| let var = Expression { Process } Process′
| fresh var { Process } Process′
| end

Process′ ::= . Process Process′

| E
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Appendix B

Virtual Machine Specification

B.1 Instruction Set

B.1.1 Arithmetic

PUSH[v]: Push the value v onto the arithmetic stack.

ADD: Stack addition operator.

SUB: Stack subtraction operator.

MUL: Stack multiplication operator.

DIV: Stack truncated division operator.

B.1.2 Store and Arithmetic

LOAD[n]: Push the value of n in the environment onto the stack.

STORE-INT[n]: Pop a value from the stack and store it in the variable n.

STORE-CHANNEL[v,c]: Store the channel c in the variable v.

COPY[t,f]: Copy the contents of t to f.

DELETE[v]: Delete v from the environment.

B.1.3 Control Flow

VAR-COMPARE[v1,v2]: Push 1 to the stack if the contents of v1 and v2 are
equal.
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B.1. INSTRUCTION SET

CHAN-COMPARE[v,c]: Push 1 to the stack if v contains the channel c.

LABEL[name]: Mark a label with name.

JUMP-ZERO[name]: Pop from the stack; if the result is 0 jump to name.

JUMP-NON-ZERO[name]: Pop from the stack; if the result is non-zero jump
to name.

SPAWN[name]: Spawn a concurrent interpreter at name.

END: Stop execution.

B.1.4 Synchronisation

RECEIVE-DIRECT[chan,name]: Receive a value on chan and store it in name.

RECEIVE-INDIRECT[var,name]: Receive a value on the channel stored in
var and store it in name.

SEND-CHAN-DIRECT[chan,data]: Send the channel data on chan.

SEND-CHAN-DIRECT[var,data]: Send the channel data on the channel stored
in var.

SEND-INT-DIRECT[chan]: Pop a value from the stack and send it on chan.

SEND-INT-DIRECT[var]: Pop a value from the top of the stack and send it
on the channel stored in var.

SEND-VAR-DIRECT[chan,data-var]: Send the contents of the variable data-var
on chan.

SEND-VAR-DIRECT[var,data-var]: Send the contents of the variable data-var
on the channel stored in var.
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Appendix C

Using pcl

The implementation of the language as described in this dissertation can be
deployed as a standalone .jar file. The usage of this executable is described
here.

C.1 External Libraries

External code in the format described in Section 3.3 should be compiled to
.class files using scalac and placed in the directory:

/usr/local/lib/picl

The basename of these files determines the channel name by which they
are loaded at runtime.

C.2 Command Line Arguments

When running the executable, the argument format is:

pcl file [--dump] [--trace]

The individual arguments are defined as:

file The program file to compile and run. Non-optional.

--dump Print all intermediate representations to standard error. Optional.

--trace Print each instruction and a thread ID when it is executed. Op-
tional.
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Appendix D

π-Calculus Definition

D.1 Syntax

The full syntax of the π-calculus is given by the grammar:

P ::= x(y).P
| x〈y〉.P
| P |P
| (ν x)P
| !P
| nil

In this grammar, P is a π-calculus process, and x, y are names from a
countable set of names X.

D.2 Name Scope

The free and bound names of a process are given by the functions fn(p) and
bn(p) respectively. In the extended semantics that includes external channels,
all names in the set E are taken to be free names.
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D.3. STRUCTURAL CONGRUENCE

Free names:

fn(nil) = ∅
fn(x〈y〉.P ) = {x, y} ∪ fn(P )

fn(x(y).P ) = a ∪ (fn(P )− {y})
fn(P | Q) = fn(P ) ∪ fn(Q)

fn((ν x)P ) = fn(P )− {x}
fn(!P ) = fn(P )

Bound names:

bn(nil) = ∅
bn(x〈y〉.P ) = bn(P )

bn(x(y).P ) = bn(P ) ∪ {x}
bn(P | Q) = bn(P ) ∪ bn(Q)

bn((ν x)P ) = bn(P ) ∪ {x}
bn(!P ) = bn(P )

D.3 Structural Congruence

The structural congruence relation is defined by a number of rules. α-
equivalence (=α) relates two processes if they are structurally equivalent,
but differ in terms of their bound names.

P ≡ Q if P =α Q

P | Q ≡ Q | P
(P | Q) | R ≡ P | (Q | R)

P | nil ≡ P

(ν x)(ν y)P ≡ (ν y)(ν x)P

(ν x)nil ≡ nil

!P ≡ P |!P
(ν x)(P | Q) ≡ (ν x)P | Q if x /∈ fn(Q)

D.4 Transition Relation

The transition relation describes how processes evolve through synchronisa-
tion with each other. It is defined by a number of rules and relies on the
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D.4. TRANSITION RELATION

definition of structural congruence given above. Q[z/y] is the process Q with
every bound instance of y replaced with z.

x〈z〉.P | x(y).Q→ P | Q[z/y]

P → Q =⇒ P | R→ Q | R
P → Q =⇒ (ν x)P → (ν x)Q

P → Q ∧ P ≡ P ′ ∧Q ≡ Q′ =⇒ P ′ → Q′
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Appendix E

Execution Logs

E.1 Basic Equivalences

Nondeterminism

Definition:

par , stdio〈a〉 | stdio〈b〉
Epar , {stdio}

Reduction sequences:

par
stdio〈a〉−−−−→ nil | stdio〈b〉
stdio〈b〉−−−−→ nil | nil

par
stdio〈b〉−−−−→ stdio〈a〉 | nil

stdio〈a〉−−−−→ nil | nil
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E.1. BASIC EQUIVALENCES

1 external @stdio

2

3 (

4 out @stdio(@a)

5 |

6 out @stdio(@b)

7 )

Listing E.1: par.pcl

1 external @stdio

2

3 (

4 end

5 |

6 out @stdio(@b)

7 )

Listing E.2: par-1a.pcl, one step reduction of par.pcl, first path

1 external @stdio

2

3 (

4 out @stdio(@a)

5 |

6 end

7 )

Listing E.3: par-1b.pcl, one step reduction of par.pcl, second path
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E.1. BASIC EQUIVALENCES

$ pcl par.pcl --dump --trace

Tokens:

List(

OpenBracket (),

Out(),

ChannelName(stdio),

OpenBracket (),

ChannelName(a),

CloseBracket (),

Parallel(),

Out(),

ChannelName(stdio),

OpenBracket (),

ChannelName(b),

CloseBracket (),

CloseBracket ()

)

Parse Tree:

ProcessStart(

ParallelProcess(

OutProcess(

ChannelName(stdio),

ChannelExpression(

ChannelName(a)

),

EmptyProcessAux ()

),

OutProcess(

ChannelName(stdio),

ChannelExpression(

ChannelName(b)

),

EmptyProcessAux ()

),

EmptyProcessAux ()

)

)

Bytecode:
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E.1. BASIC EQUIVALENCES

Spawn(a)

Spawn(b)

Jump(c)

Label(a)

SendChannelDirect(Channel(stdio),Channel(a))

End()

Label(b)

SendChannelDirect(Channel(stdio),Channel(b))

End()

Label(c)

End()

Thread 0: Spawn(a)

Thread 0: Spawn(b)

Thread 1: Label(a)

Thread 1: SendChannelDirect(

Channel(stdio),Channel(a))

Thread 0: Jump(c)

Thread 0: Label(c)

Thread 2: Label(b)

Thread 0: End()

Thread 2: SendChannelDirect(

Channel(stdio),Channel(b))

a

b

Thread 1: End()

Thread 2: End()

Listing E.4: par.pcl first execution path
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E.1. BASIC EQUIVALENCES

$ pcl par.pcl --dump --trace

Tokens:

List(

OpenBracket (),

Out(),

ChannelName(stdio),

OpenBracket (),

ChannelName(a),

CloseBracket (),

Parallel(),

Out(),

ChannelName(stdio),

OpenBracket (),

ChannelName(b),

CloseBracket (),

CloseBracket ()

)

Parse Tree:

ProcessStart(

ParallelProcess(

OutProcess(

ChannelName(stdio),

ChannelExpression(

ChannelName(a)

),

EmptyProcessAux ()

),

OutProcess(

ChannelName(stdio),

ChannelExpression(

ChannelName(b)

),

EmptyProcessAux ()

),

EmptyProcessAux ()

)

)

Bytecode:
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E.1. BASIC EQUIVALENCES

Spawn(a)

Spawn(b)

Jump(c)

Label(a)

SendChannelDirect(Channel(stdio),Channel(a))

End()

Label(b)

SendChannelDirect(Channel(stdio),Channel(b))

End()

Label(c)

End()

Thread 0: Spawn(a)

Thread 0: Spawn(b)

Thread 1: Label(a)

Thread 1: SendChannelDirect(

Channel(stdio),Channel(a))

Thread 0: Jump(c)

Thread 0: Label(c)

Thread 2: Label(b)

Thread 0: End()

Thread 2: SendChannelDirect(

Channel(stdio),Channel(b))

b

a

Thread 2: End()

Thread 1: End()

Listing E.5: par.pcl second execution path

$ pcl par -1a.pcl

b

Listing E.6: par-1a.pcl execution
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E.1. BASIC EQUIVALENCES

$ pcl par -1b.pcl

a

Listing E.7: par-1b.pcl execution
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E.1. BASIC EQUIVALENCES

Restriction

Definition:

nres , stdio〈a〉
Enres , {stdio}

res , (ν x) stdio〈a〉
Eres , {stdio}

Reduction sequences:

nres
stdio〈a〉−−−−→ nil

res
stdio〈a〉−−−−→ (ν x) nil

1 external @stdio

2

3 out @stdio(@a)

Listing E.8: nres.pcl

1 external @stdio

2

3 fresh X {

4 out @stdio(@a)

5 }

Listing E.9: res.pcl
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E.1. BASIC EQUIVALENCES

$ pcl nres.pcl --dump --trace

Tokens:

List(

Out(),

ChannelName(stdio),

OpenBracket (),

ChannelName(a),

CloseBracket ()

)

Parse Tree:

ProcessStart(

OutProcess(

ChannelName(stdio),

ChannelExpression(

ChannelName(a)

),

EmptyProcessAux ()

)

)

Bytecode:

SendChannelDirect(Channel(stdio),Channel(a))

End()

Thread 0: SendChannelDirect(

Channel(stdio),Channel(a))

a

Thread 0: End()

Listing E.10: nres.pcl execution

$ pcl res.pcl --dump --trace

Tokens:

List(

Fresh(),

VarName(X),

OpenCurlyBracket (),
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E.1. BASIC EQUIVALENCES

Out(),

ChannelName(stdio),

OpenBracket (),

ChannelName(a),

CloseBracket (),

CloseCurlyBracket ()

)

Parse Tree:

ProcessStart(

FreshProcess(

VariableName(X),

OutProcess(

ChannelName(stdio),

ChannelExpression(

ChannelName(a)

),

EmptyProcessAux ()

),

EmptyProcessAux ()

)

)

Bytecode:

Let(Variable(X),Left(Channel (~a)))

SendChannelDirect(Channel(stdio),Channel(a))

Delete(Variable(X))

End()

Thread 0: Let(Variable(X),Left(Channel (~a)))

Thread 0: SendChannelDirect(

Channel(stdio),Channel(a))

a

Thread 0: Delete(Variable(X))

Thread 0: End()

Listing E.11: res.pcl execution
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Congruence

Commutativity

Definition:

rev , stdio〈b〉 | stdio〈a〉
Erev , {stdio}

Reduction Sequences:

rev
stdio〈b〉−−−−→ nil | stdio〈a〉
stdio〈a〉−−−−→ nil | nil

rev
stdio〈a〉−−−−→ stdio〈b〉 | nil

stdio〈b〉−−−−→ nil | nil

1 external @stdio

2

3 (

4 out @stdio(@b)

5 |

6 out @stdio(@a)

7 )

Listing E.12: reverse.pcl

$ pcl reverse.pcl

a

b

$ pcl reverse.pcl

b

a

Listing E.13: reverse.pcl execution
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Associativity

Definition:

assocl , (stdio〈a〉 | stdio〈b〉) | stdio〈c〉
Eassocl , {stdio}

assocr , stdio〈a〉 | (stdio〈b〉 | stdio〈c〉)
Eassocr , {stdio}

1 external @stdio

2

3 (

4 (

5 out @stdio(@a)

6 |

7 out @stdio(@b)

8 )

9 |

10 out @stdio(@c)

11 )

Listing E.14: assocl.pcl

1 external @stdio

2

3 (

4 out @stdio(@a)

5 |

6 (

7 out @stdio(@b)

8 |

9 out @stdio(@c)

10 )

11 )

Listing E.15: assocr.pcl
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E.1. BASIC EQUIVALENCES

$ pcl assocl.pcl

c

a

b

$ pcl assocl.pcl

c

b

a

$ pcl assocl.pcl

a

c

b

$ pcl assocl.pcl

b

c

a

$ pcl assocl.pcl

a

b

c

$ pcl assocl.pcl

b

a

c

Listing E.16: assocl.pcl execution
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E.1. BASIC EQUIVALENCES

$ pcl assocr.pcl

a

c

b

$ pcl assocr.pcl

c

a

b

$ pcl assocr.pcl

c

b

a

$ pcl assocr.pcl

b

c

a

$ pcl assocr.pcl

a

b

c

$ pcl assocr.pcl

b

a

c

Listing E.17: assocr.pcl execution

76



E.1. BASIC EQUIVALENCES

Restriction Reordering

Definition:

xy , (ν x)(ν y) stdio〈a〉

yx , (ν y)(ν x) stdio〈a〉

1 external @stdio

2

3 fresh X {

4 fresh Y {

5 out @stdio(@a)

6 }

7 }

Listing E.18: xy.pcl

1 external @stdio

2

3 fresh Y {

4 fresh X {

5 out @stdio(@a)

6 }

7 }

Listing E.19: yx.pcl

$ pcl xy.pcl

a

Listing E.20: xy.pcl execution
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E.1. BASIC EQUIVALENCES

$ pcl yx.pcl

a

Listing E.21: yx.pcl execution

Nil Restriction

Definition:

resn , (ν x) nil

1 fresh X {

2 end

3 }

Listing E.22: resn.pcl

$ pcl resn.pcl

$

Listing E.23: resn.pcl execution

Scope Extension

Definition:

scope , ((ν x) stdio〈a〉) | stdio〈b〉
Escope , {stdio}

scopeext , (ν x) (stdio〈a〉 | stdio〈b〉)
Escopeext , {stdio}
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1 external @stdio

2

3 (

4 fresh X {

5 out @stdio(@a)

6 }

7 |

8 out @stdio(@b)

9 )

Listing E.24: scope.pcl

1 external @stdio

2

3 fresh X {

4 (

5 out @stdio(@a)

6 |

7 out @stdio(@b)

8 )

9 }

Listing E.25: scopeext.pcl

$ pcl scope.pcl

b

a

$ pcl scope.pcl

a

b

Listing E.26: scope.pcl execution
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$ pcl scopeext.pcl

a

b

$ pcl scopeext.pcl

b

a

Listing E.27: scopeext.pcl execution
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E.2. ALGORITHMS

E.2 Algorithms

This section contains code and execution logs for several numerical algorithms
implemented in the language. Equivalent python code is also given for testing
purposes.

Sign

1 external @stdio

2

3 fresh SignN {

4 fresh SignC {

5 (

6 in SignN(Num).

7 in SignC(Cont).

8 [Num = 0] {

9 out Cont(0).end

10 }.

11 [Num = 1] {

12 out Cont(1).end

13 }.

14 let Div = (1 - 2*Num) / (1 - Num) {

15 out Cont(2*Div - 3)

16 }

17 |

18 in @stdio(N).

19 out SignN(N).

20 out SignC(@stdio)

21 )

22 }}

Listing E.28: sign.pcl
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E.2. ALGORITHMS

1 n = int(input("> "))

2 if n == 0:

3 print(0)

4 elif n > 0:

5 print(1)

6 else:

7 print(-1)

Listing E.29: sign-ref.py

$ pcl sign.pcl

> 0

0

$ python sign -ref.py

> 0

0

$ pcl sign.pcl

> 768

1

$ python sign -ref.py

> 768

1

$ pcl sign.pcl

> -3429

-1

$ python sign -ref.py

> -3429

-1

$ pcl sign.pcl

> 12

1

$ python sign -ref.py

> 12

1

Listing E.30: sign.pcl testing
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Modulus

1 external @stdio

2

3 fresh Input {

4 (

5 in Input(Num).

6 in Input(Mod).

7 in Input(Cont).

8 out Cont(Num - ((Num / Mod) * Mod))

9 |

10 in @stdio(N).

11 in @stdio(M).

12 out Input(N).

13 out Input(M).

14 out Input(@stdio)

15 )

16 }

Listing E.31: mod.pcl

1 n = int(input("> "))

2 m = int(input("> "))

3 print(n % m)

Listing E.32: mod-ref.py
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$ pcl mod.pcl

> 10

> 3

1

$ python mod -ref.py

> 10

> 3

1

$ pcl mod.pcl

> 21

> 9

3

$ python mod -ref.py

> 21

> 9

3

$ pcl mod.pcl

> 4

> 10

4

$ python mod -ref.py

> 4

> 10

4

$ pcl mod.pcl

> 0

> 3

0

$ python mod -ref.py

> 0

> 3

0

Listing E.33: mod.pcl testing
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Exponentiation

1 external @stdio

2

3 fresh ExpX {

4 fresh ExpY {

5 fresh ExpA {

6 fresh ExpC {

7 (

8 !(

9 in ExpX(X).

10 in ExpY(Y).

11 in ExpA(A).

12 in ExpC(Cont).

13 [Y = 0] {

14 out Cont(1).end

15 }.

16 [Y = 1] {

17 out Cont(A * X).end

18 }.

19 out ExpX(X).

20 out ExpY(Y - 1).

21 out ExpA(A * X).

22 out ExpC(Cont)

23 )

24 |

25 in @stdio(A).

26 in @stdio(B).

27 out ExpX(A).

28 out ExpY(B).

29 out ExpA(1).

30 out ExpC(@stdio)

31 )

32 }}}}

Listing E.34: exp.pcl
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E.2. ALGORITHMS

1 x = int(input("> "))

2 y = int(input("> "))

3 print(x**y)

Listing E.35: exp-ref.py

$ pcl exp.pcl

> 2

> 3

8

$ python exp -ref.py

> 2

> 3

8

$ pcl exp.pcl

> 5

> 1

5

$ python exp -ref.py

> 5

> 1

5

$ pcl exp.pcl

> 6

> 0

1

$ python exp -ref.py

> 6

> 0

1

Listing E.36: exp.pcl testing
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E.2. ALGORITHMS

GCD

1 external @stdio

2 fresh ModParamN {

3 fresh ModParamM {

4 fresh ModParamC {

5 fresh GCDParamA {

6 fresh GCDParamB {

7 fresh GCDParamC {

8 ((

9 !(

10 in ModParamN(Num).

11 in ModParamM(Mod).

12 in ModParamC(Cont).

13 out Cont(Num - ((Num / Mod) * Mod)))

14 |

15 !(

16 in GCDParamA(A).

17 in GCDParamB(B).

18 in GCDParamC(Cont).

19 [A = 0] {

20 out Cont(B).end

21 }.

22 [B = 0] {

23 out Cont(A).end

24 }.

25 out GCDParamA(B).

26 out ModParamN(A).

27 out ModParamM(B).

28 out ModParamC(GCDParamB).

29 out GCDParamC(Cont))

30 )|

31 in @stdio(X).

32 in @stdio(Y).

33 out GCDParamA(X).

34 out GCDParamB(Y).

35 out GCDParamC(@stdio)

36 )}}}}}}

Listing E.37: gcd.pcl
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E.2. ALGORITHMS

1 from fractions import gcd

2 a = int(input("> "))

3 b = int(input("> "))

4 print(gcd(a,b))

Listing E.38: gcd-ref.py

$ pcl gcd.pcl

> 100

> 40

20

$ python gcd -ref.py

> 100

> 40

20

$ pcl gcd.pcl

> 11

> 19

1

$ python gcd -ref.py

> 11

> 19

1

$ pcl gcd.pcl

> 56

> 56

56

$ python gcd -ref.py

> 56

> 56

56

Listing E.39: gcd.pcl testing
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E.2. ALGORITHMS

Fibonacci

1 external @stdio

2

3 fresh FibParamN {

4 fresh FibParamA {

5 fresh FibParamB {

6 fresh FibParamC {

7 (

8 !(

9 in FibParamN(N).

10 in FibParamA(A).

11 in FibParamB(B).

12 in FibParamC(Cont).

13 [N = 0] {

14 out Cont(A).end

15 }.

16 out FibParamN(N - 1).

17 out FibParamA(A + B).

18 out FibParamB(A).

19 out FibParamC(Cont)

20 )

21 |

22 in @stdio(X).

23 out FibParamN(X).

24 out FibParamA(0).

25 out FibParamB(1).

26 out FibParamC(@stdio)

27 )

28 }}}}

Listing E.40: fib.pcl
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E.2. ALGORITHMS

1 def fib(n,a,b):

2 if n == 0:

3 return a

4 else:

5 return fib(n-1, a+b, a)

6

7 n = int(input("> "))

8 print(fib(n,0,1))

Listing E.41: fib-ref.py

$ pcl fib.pcl

> 1

1

$ python fib -ref.py

> 1

1

$ pcl fib.pcl

> 4

3

$ python fib -ref.py

> 4

3

$ pcl fib.pcl

> 15

610

$ python fib -ref.py

> 15

610

Listing E.42: fib.pcl testing
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E.3. ENCODING OF THE CHURCH NUMERALS

E.3 Encoding of The Church Numerals

1 fresh Zero {

2 fresh Succ {

3 fresh True {

4 fresh False {

5 fresh LazyFalse {

6 fresh IsZero {

7 fresh IfElse {

8 ((((((

9 !(

10 in Zero(Args).

11 in Args(Output).

12 in Args(F).

13 in Args(X).

14 out Output(X)

15 )

16 |

17 !(

18 in Succ(Args).

19 in Args(Output).

20 in Args(N).

21 in Args(F).

22 in Args(X).

23 fresh NArgs {

24 fresh FArgs {

25 out N(NArgs).

26 out F(FArgs).

27

28 out NArgs(FArgs).

29 out FArgs(Output).

30

31 out NArgs(F).

32 out NArgs(X)

33 }}

34 )

35 )|

36 !(

37 in True(Args).
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E.3. ENCODING OF THE CHURCH NUMERALS

38 in Args(Output).

39 in Args(X).

40 in Args(Y).

41 out Output(X)

42 )

43 )|

44 !(

45 in False(Args).

46 in Args(Output).

47 in Args(X).

48 in Args(Y).

49 out Output(Y)

50 )

51 )|

52 !(

53 in LazyFalse(Args).

54 in Args(Output).

55 in Args(X).

56 out Output(False)

57 )

58 )|

59 !(

60 in IsZero(Args).

61 in Args(Output).

62 in Args(N).

63 fresh NArgs {

64 out N(NArgs).

65 out NArgs(Output).

66 out NArgs(LazyFalse).

67 out NArgs(True)

68 }

69 )

70 )|

71 !(

72 in IfElse(Args).

73 in Args(Output).

74 in Args(P).

75 in Args(A).

76 in Args(B).

77 fresh PArgs {

78 out P(PArgs).
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E.3. ENCODING OF THE CHURCH NUMERALS

79 out PArgs(Output).

80 out PArgs(A).

81 out PArgs(B)

82 }

83 )

84 )

85 }}}}}}}

Listing E.43: church.pcl
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1 Introduction & Description of Work

In theoretical Computer Science there exists the idea of a ‘calculus’ — a small
language that exists to distill or demonstrate a particular programming paradigm
in as minimal a way as possible. The most famous of these is the �-calculus
which demonstrates functional programming, and another example is the object
calculus (which relates to object oriented programming).

In this project I will consider the ⇡-calculus - a minimal model for concurrent
programming based on name passing along named channels [1]. While the ⇡-
calculus has been demonstrated to be Turing-complete (by showing that the
�-calculus can be embedded within the ⇡-calculus), it may be useful to have a
concrete implementation of the language that can be used to demonstrate its
behaviour.

To this end the project I propose is to implement a variant of the synchronous
⇡-calculus by means of an end-to-end compiler. This compiler will take a con-
crete textual representation of the language and transform it into the executable
bytecode format for a virtual machine I will design from scratch. The language
variant proposed will include support for concrete data types (e.g. 64-bit inte-
gers) in order to make the model of computation less abstract for users of the
language.

Implementing the language in this way will provide an interesting discussion
on how nondeterminism can be dealt with in a practical implementation.

2 Starting Point

This project is not based on any previous Part II project that I am aware of,
and at the time of writing this proposal I have not written any code that I would
expect to use in the project for any reason.

3 Substance & Structure

The aim of the project is to implement a variant of the ⇡-calculus as a compiler
and a virtual machine as described above. This will involve the implementation
of the following components:
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1. A simple concrete syntax for the variant language must be designed. This
syntax will be an as direct as possible textual representation of the abstract
syntax of the ⇡-calculus. Previous similar e↵orts in this area such as Pict
[2] and OccamPi [3] will be examined with regard to their treatment of
syntax. As well as this, I will also decide which concrete data types will
be included as language primitives. This stage of the implementation will
require careful thought and evaluation of the usability of the language
design.

2. The instruction set and implementation strategy for the virtual machine
must be decided. Di↵erent options at this stage will have relative ad-
vantages and disadvantages when used as a target for the compiler, par-
ticularly with regards to how nondeterminism is implemented. Initially
programs in the bytecode format will be able to perform simple read /
print IO to demonstrate their execution. Extension work could involve a
visualisation of the execution by a modified virtual machine. Nondeter-
minism in the language will be provided by the VM calling into a threading
library when parallel composition occurs. Extension work could allow for
more advanced simulation or animation of the program’s execution (e.g.
by backtracking).

3. I will write a collection of small programs in my variant language that
demonstrate the functionality and features of the ⇡-calculus, as well as
some larger programs that perform ‘real world’ computations:

• I will write a program for each syntactic element of the calculus (e.g.
sending a message on a channel, waiting for and receiving a message,
parallel composition etc.). These programs can be evaluated by com-
parison with the semantics of the abstract ⇡-calculus to demonstrate
that my variant language does in fact implement the calculus cor-
rectly. As a representative example, one program may demonstrate
the parallel composition of two processes evolving when one sends a
message that the other is waiting to receive. To demonstrate suc-
cess here I will present mathematical proofs of the execution of these
small programs using the reduction semantics of the calculus.

• For the larger programs, I will select several well–known algorithms
(e.g. computing fibonacci numbers or calculating the GCD of two
numbers) and implement them in my variant language to demon-
strate that the language as a whole is capable of more concrete work.
I will need to present a test set of data for these programs that can
be passed to a reference implementation, then compared to my pro-
gram’s output for correctness.

• Milner [1] demonstrates that it is possible to encode certain data
structures (e.g. a list structure or the Peano natural numbers) in the
⇡-calculus. I will demonstrate programs equivalent to the encoding
given by Milner (i.e. as a direct syntax translation), then show that
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their execution is correct according to the semantics of the language.
This will require me to present a mathematical proof of the evaluation
of such an encoding using the reduction semantics of the calculus.

• Possible extension work could involve modelling a security protocol
(or similar), though this would be more di�cult to test and evaluate.

4. A lexer and parser for the concrete syntax will be implemented. This will
involve formally analysing the grammar and structure of the language that
has been designed. A suitable formal parsing algorithm will be evaluated
and decided upon based on the requirements of the grammar.

5. The parse tree that has been outputted from the parser will be converted
into an intermediate representation using code generation techniques and
algorithms (e.g. register allocation and basic block flow analysis). Some
transformations and optimisations can be applied to the resultant flow
graph.

6. Finally, I will generate target code from my intermediate representation.
Extension work may be possible at this stage (e.g. to generate ‘real world’
code such as ARM assembler).

4 Success Criteria

For the project to be judged as a success I have the following criteria:

• To be able to demonstrate the compilation of a suite of programs (as
described above) that demonstrate the capabilities of my variant language.

• To be able to demonstrate the execution of such programs by the Virtual
Machine that I implement.

• My implementation will be judged as a success if these programs meet
their success criteria as described above (i.e. being compliant with the
abstract semantics or performing a computation correctly).

5 Plan of Work & Timetable

Weeks 1–2 Michaelmas Preparatory work on project including initial dis-
cussions with supervisor and writing of project proposal, as well as initial
individual research into project topics. Milestones: Accepted project
proposal.

Weeks 3–4 Michaelmas Formal design and evaluation of the languages to
be used in the project. Begin to design skeleton layout for dissertation to
facilitate writing at later stages. Milestones: Grammar for the variant
language being implemented (to facilitate lexer and parser design), and a
specification / semantics for the target virtual machine code.
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Weeks 5–6 Michaelmas Implementation of the virtual machine according to
the specifications designed in the previous section. Milestones: A func-
tional program that can execute hand-written examples of the virtual
machine code.

Weeks 7–8 Michaelmas Implementation of the compiler front end (i.e. lexer
and parser). Milestones: A program that can transform a textual repre-
sentation of a program compliant with the grammar designed previously
and convert it to an internal parse tree.

Christmas Vacation Work on implementing a code generation phase. Start
to flesh out sections of dissertation that have already been worked on.
Milestones: A working (if not yet complete) compiler for the variant
language that connects the front end and code generation phases.

Weeks 1–2 Lent Evaluate work done so far on the project and identify areas of
implementation that could be improved, fixed or extended. Milestones:
Progress report written and submitted as per the pink book. List of tasks
to work on with the implementation.

Weeks 3–4 Lent Work on implementation areas identified as needing work
done in previous section. Milestones: Comparision of current work with
list identified before demonstrating improvement. If time has permitted
then evaluate extension work done.

Weeks 5–6 Lent Fully evaluate success of implementation compared to suc-
cess criteria from this proposal. Milestones: Draft of evaluation section
of the dissertation. Demonstrations of project working.

Weeks 7–8 Lent Work on drafting remaining sections of dissertation as time
permits. Milestones: Significant portion of dissertation completed in
draft form (if not all).

Easter Vacation Complete draft of dissertation. Milestones: Draft disser-
tation sent to supervisor for feedback before returning for Easter term.

Weeks 1–2 Easter Minor tweaks to dissertation. Milestones: Dissertation
tweaked as needed and almost ready for submission.

Weeks 3–4 Easter Fix any last-minute issues and submit dissertation and
code. Milestones: Dissertation submitted as per the pink book.

6 Resource Declaration

The project will be implemented in Scala, a functional / multi-paradigm lan-
guage that runs on the JVM. I will need to install the Scala compiler and
libraries on the machines I use for development. This can be done locally with
no root permissions so is compatible with the MCS.
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I intend to carry out development work primarily on my own laptop for
convenience. Its specifications are:

• 2013 Macbook Air 13”

• 1.7 GHz Intel Core i7 CPU

• 8 GB RAM

• 256 GB SSD

I accept full responsibility for this machine and I have made contingency
plans to protect myself against hardware and/or software failure. In the event
of such failure, I will be able to use the MCS computing facilities to complete
the project with minimal disruption.

In order to protect myself against data loss or corruption, I have a multi-
location backup strategy in place. All my work will be pushed to a private
BitBucket git repository as I complete parts of it, so that revision history and
the full corpus of work as it stands is available to clone if necessary. As well as
this, my laptop will be backed up automatically every night to an external hard
disk drive using Apple’s Time Machine facility. Finally, I will set up a weekly
snapshot of all my work that will be remotely copied to my MCS file space.
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