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A Heterogeneous World



Triple Constraint

PORTABLE MAINTAINABLE

FAST

×



“IMPORTANT: GPU support is currently highly EXPERIMENTAL and 
should be used by experienced developers only. In particular, DO NOT 

TRY TO WILDLY AND DIRTILY HACK THE BUILD SYSTEM, EVEN IF 
YOU ARE A PHYSICIST!”

A Dire Warning



Can we do better?
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Example

void f(int n, float *x) {

  for(...) {

    // expensive loop...

  }

  library_call(n, x);

}

void f(int n, float *x) {

  new_lib_loop_call(n, x);

}



How to achieve this?

1. Learn model of behaviour
2. Search for compatible code
3. Migrate to new library
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Synthesis

INPUTS
FFI CALL

TYPE SIGNATURE
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● Interface properties
● From documentation ● Control flow

● Program structure

● Generic heuristics

● Generate randomly
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SOLUTION

● Search for instructions

● Test using IO 
examples



Synthesis

LIBRARY
FUNCTION

LLVM PROGRAM
define float @func(...) {

entry:

  %0 = getelementptr… 

  %1 = load float…

  …

}



Search

LLVM PROGRAM
define float @func(...) {

entry:

  %0 = getelementptr… 

  %1 = load float…

  …

}

Search for compatible code

CONSTRAINTS
{%0} is gep instruction and

{%1} is load instruction and

{%0} is first arg of {%1}...



CAnDL
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● Off the shelf tools
● Discovers exact matches
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Graph Matching

+
● Merge multiple graphs

● Fuzzy matching - optimise metric
● Genetic algorithm implementation
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Migrating

● Inline every synthesised library call
● Match fully inlined code
● Replace match results
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Match & Replace
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Evaluation

APPLICATIONS
LIBRARIESNWCHEM

ABINIT

PATHSAMPLE

DARKNET

PARBOIL

MKL

CUDA

OPENCL



Performance Results



Portability Story



Discovery Results



Discovery Results

● Graph matching generalises well
● Few false negatives

● False positives can be eliminated
● Real C, C++ and Fortran code



Summary

● Getting all 3 is a hard problem
● Program synthesis to model
● Constraints and graph matching to 

search
● Inline and replace

● Performant and accurate

PORTABLE MAINTAINABLE

FAST


