
Type-Directed Program Synthesis and
Constraint Generation for Library Portability

Bruce Collie, Philip Ginsbach and Michael O’Boyle
University of Edinburgh

bruce.collie@ed.ac.uk
baltoli.github.io

PACT 2019

mailto:bruce.collie@ed.ac.uk

A Heterogeneous World

Triple Constraint

PORTABLE MAINTAINABLE

FAST

×

“IMPORTANT: GPU support is currently highly EXPERIMENTAL and
should be used by experienced developers only. In particular, DO NOT

TRY TO WILDLY AND DIRTILY HACK THE BUILD SYSTEM, EVEN IF
YOU ARE A PHYSICIST!”

A Dire Warning

Can we do better?

CODE

DEVICES

COMPILER

PROGRAM

Can we do better?

CODE

DEVICES

COMPILER

PROGRAM

Example

void f(int n, float *x) {

 for(...) {

 // expensive loop...

 }

 library_call(n, x);

}

void f(int n, float *x) {

 new_lib_loop_call(n, x);

}

How to achieve this?

1. Learn model of behaviour
2. Search for compatible code
3. Migrate to new library

Learning

LIBRARY
FUNCTION

FUNCTION

FUNCTION

FUNCTION

MODEL

MODEL

MODEL

MODEL

Learning

LIBRARY
FUNCTION

FUNCTION

FUNCTION

FUNCTION

PROGRAM

PROGRAM

PROGRAM

PROGRAM

Synthesis

INPUTS
FFI CALL

TYPE SIGNATURE

PROPERTIES

IO EXAMPLES

RULES

SKETCH

SKETCH

SKETCH

SKETCH

SKETCH

● Interface properties
● From documentation ● Control flow

● Program structure

● Generic heuristics

● Generate randomly

Synthesis

IO EXAMPLES

RULES

SKETCH

SKETCH

SKETCH

SKETCH

SKETCH

PROGRAM

PROGRAM

PROGRAM

PROGRAM

PROGRAM

SOLUTION

● Search for instructions

● Test using IO
examples

Synthesis

LIBRARY
FUNCTION

LLVM PROGRAM
define float @func(...) {

entry:

 %0 = getelementptr…

 %1 = load float…

 …

}

Search

LLVM PROGRAM
define float @func(...) {

entry:

 %0 = getelementptr…

 %1 = load float…

 …

}

Search for compatible code

CONSTRAINTS
{%0} is gep instruction and

{%1} is load instruction and

{%0} is first arg of {%1}...

CAnDL

CONSTRAINTS

PROGRAM

SOLVER

MATCH

MATCH

MATCH

● Off the shelf tools
● Discovers exact matches

Generalising

SPECIFIC

CONSTRAINTS
LLVM

Summary

GENERAL

CONSTRAINTS
LLVM

LLVM

LLVM

Graph Matching

+

Graph Matching

+
● Merge multiple graphs

● Fuzzy matching - optimise metric
● Genetic algorithm implementation

Summary

LIBRARY
FUNCTION

MATCH

PROGRAM

MATCH

MATCH

Migrating

● Inline every synthesised library call
● Match fully inlined code
● Replace match results

Inline

PROGRAM

HANDWRITTEN

OLD LIBRARY

PROGRAM

HANDWRITTEN

HANDWRITTEN

Match & Replace

PROGRAM

HANDWRITTEN

HANDWRITTEN

PROGRAM

NEW LIBRARY

NEW LIBRARY

Evaluation

APPLICATIONS
LIBRARIESNWCHEM

ABINIT

PATHSAMPLE

DARKNET

PARBOIL

MKL

CUDA

OPENCL

Performance Results

Portability Story

Discovery Results

Discovery Results

● Graph matching generalises well
● Few false negatives

● False positives can be eliminated
● Real C, C++ and Fortran code

Summary

● Getting all 3 is a hard problem
● Program synthesis to model
● Constraints and graph matching to

search
● Inline and replace

● Performant and accurate

PORTABLE MAINTAINABLE

FAST

