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Abstract—Porting specialized application components to new
platforms is difficult. This is particularly true if the components
depend on proprietary libraries, or specific hardware. To tackle
this, existing work has sought to recover high-level descriptions of
application components to ease their retargeting. However, exist-
ing schemes are either too limited, targeting just one application
domain, or too weak, making them ill-suited to recovering real-
world programs. Additionally, many rely on help in the form of
problem-specific user annotations or complex specifications.

This paper develops a new approach using gray-box program
synthesis, which recovers code by automatically constructing a
program to match the behavior of an unknown component.
However, unlike other synthesis approaches, it exploits the
dynamic or gray-box behavior of a component to guide recovery.
For example, the execution time, memory access patterns or
observed instruction traces can all be used to direct synthesis.

We evaluate our technique (HAZE) extensively against existing
program synthesizers and a domain-specific lifter. Our scheme
is able to generalize effectively across domains, synthesizing
and lifting more programs than prior techniques, without any
external assistance. We validate our methodology using bounded
model checking, demonstrating that our synthesized programs
are correct. Finally, we apply our approach to machine learning
workloads, obtaining significant speedups automatically.

I. INTRODUCTION

We live in an age of rapid hardware evolution due to the
decline of Moore’s Law. More than ever, porting existing
applications to new devices is critical if we wish to effectively
exploit specialized hardware.

However, it is well known that porting application com-
ponents to new hardware is difficult; components are often
only available in a low-level form [4, 48]. It is even more
challenging if they are proprietary libraries or implemented as
specialized hardware [7].

This has led to a large body of work aimed at recovering
high level code, to allow for retargeting to new systems. At
the heart of these approaches is the idea of lifting, where high-
level semantic information lost during the implementation of
a component is reconstructed [14].

However, existing lifting schemes suffer from a number of
problems which make them ill-suited to recovering real-world
programs. Some are overly specific, limited to targeting just
one application domain (e.g. image processing [37] or finite
string automata [7]). Others, aiming at greater generality, are
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too weak, restricting the lifted programs to a few lines of loop-
free code [5, 38] or Turing-incomplete DSLs [9]. Still others
push the problem to the developer, either requiring external
access to the binary [22]; a full specification and a oracle
that can provide counterexamples [1, 10]; or relying on user-
provided annotations to help the recovery [17].

What we want is a general lifting scheme able to recover
computationally important programs. It should be automatic,
requiring no external specifications or human assistance. Fur-
thermore, given that the components to be recovered may be
external libraries (or even implemented in hardware, we do
not want to rely on static user-provided binaries.

This paper develops a new approach to lifting an unknown
component using gray-box program synthesis. Unlike other
synthesis approaches, which construct a program solely based
on a static specification [40, 41], it exploits, wherever possible,
dynamic observations of component behavior. In particular,
it is able to use the execution time, memory traces and
performance counters of a component to guide the synthesis
of an equivalent program.

We applied our approach (HAZE) to real-world components.
These included DSP kernels, image processing libraries and
tensor computations. We extensively evaluated our technique
against existing program synthesizers and a specialized lifter.

We show that our scheme is able to generalize effectively
across domains, synthesizing and lifting more programs than
prior techniques, without any external assistance. We demon-
strate, using bounded model checking, that our programs are
correctly synthesized. We applied our approach to machine
learning workloads and showed that we can obtain speedups
of up to 4× automatically.

II. OVERVIEW

Our aim in this paper is to synthesize a program with
behavior equivalent to an existing system component, for
which little or no external specification is provided. We first
give an illustrative example of our approach, which is then
followed by a brief discussion of how it relates to standard
approaches to synthesis.

A. Example

Consider a scenario where we have a call to an external
library which we would like to replace with one to a newer,
faster implementation. However, the library source code is not



void (...) {
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    ...;
  }
  return;
}
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    ...;
  }
  return;
}

a += b;
b -= a;
for (int i = ...) {
   ...;
}

a += b;
b -= a;
for (int i = ...) {
   ...;
}

while (a < b) {
  while(a < 100) {
    ...;
  }
} while(true) {

  c[a] += d[e[b]];
}
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  }
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   ...;
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a += b;
b -= a;
for (int i = ...) {
   ...;
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for(int i=0; i<a; i++) {
  ,,,;
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void (...) {
  return;
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while (!(b>a)) {
  d[a] = ...;
  c[b] = ...;
}
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  return;
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   ...;
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  d[b] = ...;
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for(int j=0; j<a; j++) {
  ,,,;
}

1void (int a, int b, 
      float* c,
      float* d, 
      float* e)
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for(int i=0; i<a; i++) {
  for(int j=0; j<b; j++) {
    ...;
  }
}

for(int j=0; j<a; j++) {
  for(int i=0; i<j; i++) {
    for(int k=0; k<a; k++)
      ...;
  }
}

for(int j=0; j<a; j++) {
  for(int i=0; i<j; i++) {
    ...;
  }
}

for(int i=0; i<a; i++) {
  for(int j=0; j<b; j++) {
    c[j] = ...;
  }
}

for(int j=0; j<a; j++) {
  for(int i=0; i<b; i++) {
    ... = d[i];
  }
  c[j] = ...;
}

for (int j=0; j<a; j++) {
  for (int i=0; i<b; j++) {
    ... = i+j*a;
    ... = c[...]*d[i];
  }
}

for (int j=0; j<a; j++) {
  for (int i=0; i<b; j++) {
    ... = j/i;
    ... = c[a%j]-d[i];
  }
}

for (int j=0; j<a; j++) {
  for (int i=0; i<b; j++) {
    int x = i+j*a;
    e[j] += c[x]*d[i];
  }
}

IO EXAMPLES

R:0x696e2074
R:0x68652064
R:0x61792077
R:0x65207377
R:0x65617420

R:0x6974206f
R:0x7574206f
W:0x6e207468
R:0x65207374
R:0x72656574

R:0x73206f66
R:0x20612072
W:0x756e6177
W:0x61792061
W:0x6d657269

I OI OI OI O

a
b

Fig. 1: The left column shows types of information used for disambiguating synthesis candidates, and the right hand column
shows the space of potential candidates at each step. As more information is obtained, the space is narrowed, with candidates
colored pink discarded due to their incompatibility with newly available gray-box information. Yellow candidates are compatible
and pass onto the next stage. The green box shows the successful synthesized candidate that matches the input/output behavior
of the component (dense matrix-vector multiplication).

available. We use gray-box information gathered from library
execution to synthesize an equivalent program, which can be
used to drive the desired refactoring. In this section, we make
reference to Figure 1 throughout.

a) Type: We start with the target component type signa-
ture. It provides the structure of data passed into and out of
the component, allowing the automatic construction of input
examples. However, it does little to narrow the search space
of potential implementations (stage 1 ).

b) Runtime: When executing a component to check
that its input-output (IO) functionality matches any candidate
synthesized program, we can also easily observe its elapsed
runtime. This gives insight into how the internal implementa-
tion uses the parameters it is passed: here, we observe that its
runtime scales linearly in the value of both parameters a and
b (i.e. it is both ∈ Θ(a) and ∈ Θ(b)). This observation allows
us to narrow the space of potential solutions significantly; the
candidate in the pink box at stage 2 can be discarded as it
has complexity Θ(a3), while the two yellow-box candidates

remain.
c) Memory Traces: In many cases we can observe a trace

of the memory addresses accessed during execution which can
be used to further refine the candidate space. At stage 3 , for
example, all traces contain a pattern of access to arrays c and
d. This rules out almost all of the possible combinations of
control flow identified previously: the code in the pink box
can be discarded as it only refers to array c.

d) Performance Counters: Given the partial program
structure above, the final step in our synthesis process is
to work out the actual computation being performed by the
component. Typically, synthesizers at this stage perform an
expensive enumerative search.

If we can obtain performance counters from the component,
we can produce a distribution of what types of operation or
instruction it contains and direct the search. Here (at stage
4 ), we observe that add and multiply instructions are approx-

imately equal in frequency, and that other types (divisions,
modulos, etc.) occur infrequently or not at all and can therefore



be discarded. With these observations, an enumerative search
is able to quickly identify a correct solution (shown at stage
5 ).

B. Synthesis for Lifting

Existing approaches to synthesis based lifting can be
broadly characterized as white-box, black-box or multi-modal
schemes.

a) White and Black-box Synthesis: In classical ap-
proaches, an external formal specification is provided which
can be used to direct the construction of programs via,
for example, counterexample-guided search (CEGIS) [1, 10].
We can characterize these as white-box schemes as extrinsic
specifications are provided, and we can introspect the structure
of candidate solutions for formal verification [16].

An alternative approach is black-box synthesis, or pro-
gramming by example (PBE). Here, specifications are simply
input-output examples that provide pointwise constraints on
solution behavior. Formal verification is not possible, meaning
observational equivalence is the strongest possible correctness
guarantee. There exists a substantial, often machine learning-
based body of work in this area [6, 25, 28, 29].

Unfortunately, from a systems perspective, both approaches
are limited in the complexity of programs they can model,
and are ill-suited to the complexity and specifications found
in real-world problems, leading to the development of domain-
specialized lifters [37]. However, real components provide
other information which can guide gray-box synthesis.

b) Multi-Modal Specifications: Combining multiple
specifications for a single synthesis problem has been explored
in software engineering tasks such as API migration [42].
Similarly, the use of natural language descriptions alongside
IO examples has recently been deployed in neural approaches
to program synthesis [15, 38]. However, these approaches are
weak (the programs are restricted to small DSLs), specialized
(string processing and regular expressions respectively), and
require external assistance in the form of human-provided text
descriptions.

III. HAZE

Figure 2 shows an overview of our approach. All we assume
is that the external component provides an API. From this, we
generate inputs and call the component. It returns outputs,
which are used for later observational equivalence testing.
Varying inputs in a structured manner lets us observe how
they affect execution time, which we model and use as a
sketch [54] to guide synthesis. If available, memory traces and
performance counters can be used to further refine the sketch
and provide constraints on candidate data-flow.

Based on these constraints, we iteratively sample the space
of possible programs, until we generate candidates that match
the input/output (IO) behavior of the component. We can
generate many such IO examples to ensure confidence in
observational equivalence. In Section V, we discuss how to
generate sensible inputs, and the use of model checking to
verify that our programs are correctly synthesized.

A. Formalization
In this section, we briefly formalize the intuitive description

above.
a) Program Spaces: Let Uγ be the set of all programs

with a particular representation γ (for example, “loop-free
C program” is a specific representation). Then, a space Sγ
with representation γ is any subset Sγ ⊆ Uγ . There are
many possible spaces for each representation. Additionally,
we equip each space with a probability distribution over
its elements; this encodes the ordering of search during the
synthesis process. Typically, this distribution is implicit when
writing down a program space; we write SPγ to make explicit
that a space has distribution P .

b) Transformations: A transformation t : Sγ → Sφ is
any function t that maps a space with representation γ to
one with representation φ. Transformations perform refinement
during the synthesis process by reducing the size of the
relevant search space.

c) Priors: Transformations are almost always parameter-
ized by relevant prior knowledge of some kind. We identify
two key types of prior knowledge: concrete knowledge that
acts as a filter on the target space, and probabilistic knowledge
that induces a ranking distribution. We write:

t : Sγ
(k,P )−−−→ Sφ

for a transformation t parameterized by a concrete prior k and
probabilistic prior P .

d) Sketches: A common category of representations in
synthesis is that of program sketches [54]. Intuitively, sketches
represent partial programs that must be instantiated with local
details to produce a full solution program. In this paper, we
treat sketches abstractly as n-ary tree-like structures, where
each sketch can be composed with zero or more child sketches
[18, 39, 56].

e) Synthesis: A single phase of synthesis can be written
as:

Sγ
(k,P )−−−→ Sφ

Intuitively, this represents refinement of a search space by
transforming to a different representation and integrating con-
textual accumulated knowledge. If we have suitable knowledge
(k, P ), instead of searching through a large space Sγ we can
refine the search to a more tractable space Sφ.

IV. GRAY-BOX INFORMATION

This section describes the sources of dynamic gray-box
information used by our program synthesizer: HAZE.

A. Type Signature
The first source of information used by HAZE is the API or

type signature τ of the target function. It simply allows us to
implement a simple filtering transformation (where as before,
U is the universal set of all programs):

U τ−→ {p ∈ U | p has signature τ}

The type signature allows safe interpretation of the inputs
passed to or outputs received from the target component.
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Fig. 2: Full system diagram showing how information flows through the stages of our synthesizer.

B. Generating Inputs

Schemes that rely on an external oracle to specify correct-
ness often use randomly generated inputs over a restricted
domain. While randomly generated inputs over a ”small”
restricted domain may exercise the required functionality for
observational equivalence [19], they are unlikely to capture the
full scope of dynamic, run time behavior.

1) Example: In Figure 3b, the “small” generation regime
does not generate inputs large enough to confidently infer a
performance model; for n ∈ [−64, 64], the execution time is
within measurement error and appears approximately constant.

One possible solution to this problem is to expand the
sampling range; in Figure 3b, the “large” regime uses the range
[−1024, 1024] which is large enough to show clear increases
in execution time. However, in this case the sampled values are
clustered around n = 0, with only two exceeding n = 300. As
a result of this nondeterminism, a large number of input values
need to be sampled to consistently and confidently observe the
quadratic complexity of triangle_sum (Figure 3a).

Our solution is to sample linearly spaced points from
the same large input range, ensuring that we consistently
capture the relevant system behavior. This method (the “linear”
regime) is shown in Figure 3b.

C. Performance Models

There is a strong, intuitive correlation between a program’s
control flow structure and its runtime performance character-
istics. To formally describe the runtime performance of our
synthesis target, we use a notation similar to the Performance
Model Normal Form due to Calotoiu et al. [12, 13]. This
normal form provides a parameterized equation that can be
used to describe the runtime performance of any program in
terms of each of its scalar inputs x1, . . . , xm individually:

f(xi) = c0 · c1xpii · c2logqi2 (xi)

For each of these inputs, the runtime of the program at
different values of the input is recorded. Then, exponents
pi, qi ∈ Q and constant factors c0, c1, c2 are regressed against

the observed performance to produce the best-fitting perfor-
mance model for each input parameter.

a) Sketches: We constructed a library of program
sketches based on well-known algorithmic patterns, and as-
sociated each one with a runtime complexity class in terms of
the parameters it uses. For example, two elements of the class
O(n2) are:

for(int i = 0; i < n; ++i) {
for(int j = 0; j < n; ++j) { ... }

}

for(int i = 0; i < n; ++i) {
for(int j = i; j < n; ++j) { ... }

}

Each sketch then provides a relationship between their own
complexity and child complexity when combined. For exam-
ple, nesting the two loop structures above gives a complexity
of O(n2 · n2) = O(n4).

b) Tree Search: A set of possible program sketches can
be constructed using a simple tree search procedure. Initially,
we partition the available partial sketches into two groups:
those that have O(1) complexity in terms of the function’s
parameters, and those that have greater than O(1) complexity.

For each parameter’s performance model, we identify a set
of sketches that could contribute to that model. For example,
a sketch with complexity O(n2) could appear if the overall
complexity in n was O(n3), but not if it were only O(n) (for
example). Then, we enumerate compositions of the sketches
for the full set of parameters, pruning compositions that exceed
the total required complexity (see Figure 5 for an illustration
of this).

Writing S for the space of all program sketches, the
transformation we implement given an appropriate PCNF O
is:

U O−→ S



int triangle_sum(int n) {
int r = 0;
for (int i = 1; i < n; ++i)
for (int m = 1; m < i; ++m)
r += m;

return r;
}

(a) Simple example synthesis problem, with
time complexity of O(n2) in its single param-
eter n [53].

(b) Execution times of triangle_sum plotted against 10 different input values of n,
for three input generation strategies: small ([−64, 64]) and large ([−1024, 1024]) uniform
random, and linearly spaced.

Fig. 3: Example showing the benefit of a partially-deterministic, interpretable input generation strategy when considering
dynamic behavior of synthesis oracles.

Fig. 4: Comparison of fitted runtime complexity models for
four functions in our synthesis dataset. Using the linear sam-
pling regime, complexity in a single parameter can be reliably
inferred (shaded regions show 95% confidence intervals).

O(1)

O(m2)

×

O(n2) O(log22(p))

×

O(mn2)O(n4) O(m2n2)

× ×

Fig. 5: Partial search tree for a sketch with overall complexity
O(mn3log2(p)) in parameters m,n, p. Each labeled node in
the tree represents the accumulated complexity; paths through
the tree are ruled out as their associated complexity becomes
unviable.

D. Memory Traces

As well as execution time, for many systems, it is possible
to observe an executing component’s memory trace.

a) Traces: We define a memory trace T to be an ordered
sequence of pairs:

T , ((m0, a0), . . . (mn, an))

where each mi indicates the type of access made (read or
write), and each ai indicates the address of that access. To
minimize the burden of supplying this information, we do not
encode the value read or written, nor the size of each access.

b) Normalization: The concrete memory addresses in a
trace will be different even between executions of the same
program, and so the traces need to be normalized to a common
representation.

To do this, we first identify a set of base addresses in the
trace, which all accesses will be expressed relative to. We do
so by identifying addresses that appear at the beginning of
contiguous sequences of accesses, using an assumption from
related work in the area of memory trace analysis [49]. Then,
we subtract the closest matching base address from each access
to produce a (base, offset) pair, such that no offset is negative.

c) Sketch Tracing: We insert code into each sketch that
imitates memory accesses at appropriate points. Then, we
execute each sketch a number of times with this instru-
mentation, selecting randomly chosen assignments for branch
conditions. This produces a set of memory traces for each
sketch that represent a non-exhaustive possible set of that
sketch’s behaviors.

d) Alignment: Next, we use the Gotoh sequence align-
ment algorithm [27] to identify conserved regions between
a sketch and program trace. This algorithm was selected
specifically to deal with trace sections where long gaps appear;
a likely scenario when considering traces generated from
executing programs. The resulting alignment score represents
how well the behaviors of the program trace are explained by
the sketch trace. No alignment will score perfectly, but better
correspondences will align more closely.



e) Scoring: From the target program we have a set T of
ground-truth traces, and a set TS of traces from each sketch S.
From this, the aim is to select the sketch that explains the set
of program traces best on aggregate. For an individual sketch
trace s ∈ TS , we define a scoring function q(s):

q(s) , max{align(s, t) | t ∈ T}

That is, the score for an individual sketch trace is simply its
best alignment score with any program trace. This is intuitive;
program traces may correspond to different executions, and so
we cannot expect a single sketch trace to explain all possible
program traces.

Then, for a sketch S with traces s1, . . . , sN , we define an
aggregated scoring function Q(S):

Q(S) ,
1

N

N∑
i=1

q(si)

Sketches that score highest with respect to Q are those that
on average, generate traces that best explain a trace from the
set of program traces T.

f) Ranking: We rank sketches from 1 to N according
to their Q score, then assign each one a sampling probability
using a geometric distribution:

P(sketch k) , (1− p)k−1p

HAZE uses p = 0.5, but p can be varied to reflect different
priors on the structure of the ranked sketch set (i.e. if more
sketches are likely to be viable, decrease p).

E. Instruction Type Distribution

Many synthesis procedures ultimately terminate in a
resource-intensive enumerative search for a sequence of in-
structions or operations that comprise a correct solution. For
HAZE, this entails searching for an instantiation of each hole
in a program sketch with a concrete program value.

To accelerate this search for concrete instructions, HAZE
considers the observed distribution of instruction types dis-
patched by the target component as it executes. By doing so,
the synthesis process can be biased towards programs that
produce similar distributions to the target.

More precisely, for a set of possible instruction opcodes:

O , {o0, o1, . . . , on}

HAZE constructs a cumulative count C across all executions
of the component:

C : O 7→ N

of how many times each opcode was observed during exe-
cution. From this count, HAZE then constructs a probability
distribution P satisfying, for some δ ∈ [0, 1

n ):

∀i . P(oi) ∼ C(i) ∧ P(oi) ≥ δ

int fact(int n) {
int r = 1;
while (n-- > 1) r *= n;
return r;

}

Fig. 6: Synthesis problem demonstrating integer overflow; one
possible cause of safety issues when generating inputs.

a) Search: The space of potential instantiations for a set
of holes is combinatorially large. We sample a type-safe in-
struction opcode for each hole from the probability distribution
described above, then enumerate possible arguments for that
instruction using a set of heuristics (e.g. more local arguments
are preferred to distant ones).

F. Gray-Box Synthesis

Our synthesizer, HAZE combines the transformations de-
scribed above producing a complete pipeline that can be used
to lift and synthesize programs. It uses LLVM intermediate
representation as its target language (for compatibility with
existing toolchains and boilerplate code [26]), which is then
compiled and executed. Let S ′ be the space of fully instanti-
ated instantiated sketches, and L be the space of LLVM pro-
grams. Then, using a distribution P and compilation function
C we can write the transformation as:

S ′ C−→ L

We can now write down the full multi-phase synthesis
pipeline implemented by HAZE:

U τ−→ Uτ
O−→ S (T,Q)−−−−→ SG P−→ S ′ C−→ L

V. SAFE SYNTHESIS

Given that we assume little of the target components, it
is critical that the synthesis process is safe. In particular, we
need to consider safe generation of component inputs and the
correctness of synthesis.

1) Safety and Bounding: Not all programs can safely accept
all possible values; some programs may exhibit incorrect or
unsafe behavior when called with certain inputs. For example,
the program listed in Figure 6 will overflow a standard 32-bit
integer for values of n greater than 12. As well as integer
overflow, there are safety issues for programs that access
memory (for example, if a parameter is used as an index
into an array also passed to the function). Where possible,
our testing framework detects and reports these cases cleanly
when collecting input-output examples; they are not included
in the sets of IO examples used to specify correctness for a
problem.

Fully random input generation methods struggle to con-
cisely capture the behavior of reference functions in the
presence of these safety issues. For example, the “small” and
“large” fully random regimes in Figure 3b will both generate
uninteresting (n ≤ 1) or unsafe (n > 12) inputs, the majority



of the times they are invoked. This means that a large number
of attempted inputs must be tried to produce the required
number of working inputs.

Our solution uses the heuristic that programs exhibit such
unsafe behavior for a continuous, infinite range of values either
above or below a threshold. Under this assumption, when we
observe a run of unsafe behavior, we back off and retry with
the first observed unsafe value as our new upper bound on
input. Intuitively, this compresses the same number of linearly
spaced inputs into the safe interval supported by the oracle.

A. Verifying Synthesized Programs

In our programming by example setting, the only possible
correctness specification for a synthesis problem is equivalent
behavior over a set of input-output examples. This is known as
observational equivalence; does the solution’s behavior look
the same for all the input examples attempted?

However, if the underlying code for a particular problem
is available, we can use formal verification tools to provide
stronger and more precise guarantees on the correctness of a
solution. KLEE [11] is a suite of tools for performing symbolic
execution on LLVM IR programs. By doing so, we are able to
efficiently discover code paths within, or inputs to a program
that cause errors to occur.

Our application of KLEE is to identify any inputs that cause
two functions (i.e. a reference implementation and a candidate
synthesized solution) to produce different behavior. We do so
using a modified version of the basic function equivalence
procedure suggested by Ramos and Engler [47], and with the
key addition of a modernized implementation of the symbolic
floating point support from KLEE-FLOAT [35].

VI. EXPERIMENTAL SETUP

We constructed a dataset of problems from multiple sources
and evaluated HAZE against two existing synthesizers and a
lifter.

A. Dataset

a) Synthesis Problems: Our starting point is a set of
112 synthesis problems used to evaluate PRESYN [20]. The
set of problems covers a range of domains (mathematical
primitives, vector operations, string manipulations), and sub-
sumes the evaluation sets for a number of other synthesizers
[25, 38, 50, 53].

b) Benchmark Kernels: Suites of performance bench-
marks are often used to evaluate binary lifting techniques
[49]; we identified three such suites that provide a natural
increase in complexity from the synthesis problems above.
These were UTDSP [51], DSPStone [59] and PolyBench [45]
(N = 18, N = 15, N = 30 respectively). The 63 new
problems represent individual benchmark kernels that are more
challenging than typical program synthesis problems, with the
PolyBench set in particular containing some with far greater
complexity than any existing synthesis techniques are able to
scale to.

c) Specialized Domains: We identified a novel set of
evaluation problems intended to model real-world code in
two domains relevant to the synthesizers we evaluated HAZE
against: image processing functions and tensor manipulations.
We evaluated a set of N = 9 image-processing functions de-
rived from [37] These covered both low-level implementation
details of individual functions, as well as high-level heuristic
descriptions (such as the “Blend” and “Filter” categories
identified by Ahmad et al. [2]).

Understanding and manipulating tensor operations is an im-
portant task. We generated N = 5 common tensor manipula-
tions using the Taco compiler [33, 34]. Each manipulation had
a different set of optimizations and scheduling transformations
applied to it in order to evaluate how well HAZE responds to
changes in implementation detail.

B. Comparisons

We evaluate HAZE against the following leading program
synthesizers and lifting approaches; PRESYN [20] exhibits
state-of-the-art performance on the set of synthesis problems
given above; SKETCHADAPT [38] is a leading example of a
neural synthesizer, and Helium [37] is a domain-specific lifter
for image-processing applications recovering high-level code
from dynamic observations of an application executing.

C. Experiments

Because the synthesizers and lifters used in our evaluation
target diverse problem domains and specification formats,
running them all on the same set of benchmarks is challenging.
This is a problem shared by other work in synthesis [20, 43].

a) Porting: All of the tools described above ran on our
evaluation system without modification except Helium, for
which we were unable to build successfully using its original
toolchain. To resolve this, we produced a port of Helium’s
core that supported Linux binaries. This porting process was
substantial in places, especially when dealing with platform-
specific instrumentation tools.

b) Running Experiments: The core of our cross-
evaluation is a comparison of which implementations were
able to synthesize (or lift) each benchmark problem. To do
so, we adapted each benchmark problem for the specific input
requirements for each implementation. For example, PRESYN
required training examples of previous syntheses, and Helium
required inputs and outputs to be read from image-like files.

VII. RESULTS

In this section we evaluate and analyze HAZE’s synthesis
performance against existing schemes. We examine how long
HAZE takes to synthesize, and use model-checking to evaluate
its validity. This is followed by an analysis of gray-box
information and an ablation study on its use in synthesis.
Finally, we examine a small case study that demonstrates the
increased potential for performance improvement.



TABLE I: Summary of successfully synthesized or lifted pro-
grams across our evaluation dataset for each implementation
examined. Columns show the number of successfully synthe-
sized programs from each group for a single implementation.

N PRESYN SKETCHADAPT Helium HAZE

Presyn 112 96 10 - 103
UTDSP 18 6 - - 9
DSPStone 15 10 - - 13
PolyBench 30 2 - 5 14
Image 9 2 - 10 6
Tensor 5 1 - - 4

Total 189 117 10 15 149

Fig. 7: Synthesis success rate for each synthesizer evaluated,
across the set of benchmark suites used for evaluation.

A. Success Rate

For each implementation, we attempted each of the 189
synthesis problems listed in Section VI-A, recording the total
successful syntheses for each implementation, as well as a
per-group breakdown. These results are summarized visually
in Figure 7, and listed in full in Table I.

HAZE is the best-performing implementation across the
entire dataset, and on all but one of the individual problem
groups (the image-processing kernels). It is also the only
implementation able to synthesize at least one example from
each of the benchmark groups.

By integrating multiple sources of gray-box knowledge,
HAZE is able to outperform comparable implementations
across the dataset at large. For example, HAZE is able to
learn a group of logarithmic-time problems from PRESYN’s
benchmarks more effectively by using PMNF information
(Section III). PRESYN fails to predict the control flow structure
for these.

Helium outperforms all other implementations on its own
specialized domain of image processing, but fails to generalize
across the dataset. SKETCHADAPT successfully synthesizes a
small number of simple examples,but is unable to scale in
complexity or across domains. Given that it is targeted at list-
processing tasks, this is not surprising.

Where HAZE fails, it does so most commonly because the
sequence of instructions required to produce a correct solution

Fig. 8: Individually normalized kernel density estimate show-
ing an approximate distribution for the number of instructions
in successfully synthesized programs for each implementation,
as well as instruction counts across the entire dataset (“Ideal”).
The area under each curve is held constant, and so we can
measure generalization across the dataset (i.e. adaptation to
new problem domains) by similarity to the ideal curve.

to a problem is too long; even with the help of an probability
distribution over their types, the space is too large to search
effectively. Less commonly (and primarily in the PolyBench
and UTDSP groups), the required control flow structures are
not implementable using HAZE’s library of sketches.

B. Analysis

Directly comparing the complexity of successful syntheses
across implementations is challenging. To visualize the ability
of an implementation to synthesize these complex examples
relative to their frequency within the dataset, we computed nor-
malized kernel density estimates for the number of instructions
in each implementation’s successful syntheses. These density
estimates are shown in Figure 8, along with the density for the
dataset as a whole. Qualitatively, the closer an implementation
is to the dataset’s curve, the less bias it exhibits towards
programs of a particular size.

Existing synthesizers (PRESYN, SKETCHADAPT) show sim-
ilar spikes at low instruction counts, indicating the difficulty
they experience in scaling to larger problems. Conversely,
Helium’s distribution is centered at high instruction counts
but does not cover small programs at all. An alternative view
of the same information is given in Figure 9; it shows joint
distributions of the number of instructions and the number of
sketch fragments for the examples synthesized successfully by
each implementation. Compared to existing implementations,
HAZE takes a significant step towards generalizing across the
entire dataset.

C. Synthesis Time

Optimizing for synthesis time was not a primary goal when
implementing HAZE; for example, no directed search methods
are used when generating instruction sequences. However,
our results suggest that HAZE is usable. All our successful



Fig. 9: Distribution of instruction count vs. fragment count for each implementation’s successful syntheses; up and to the right
represents more complex programs.

Fig. 10: Distributions of HAZE’s required synthesis time
across, each group of benchmark problems.

syntheses were obtained using a 3 hour threshold time on a
desktop-class machine, and nearly 80% of these were obtained
in under 15 minutes. Figure 10 shows the full distribution of
time taken for successful syntheses by HAZE. It shows that
the new datasets evaluated in this paper are significantly more
complex, with PolyBench providing a particular challenge.
Synthesis search time, rather than gathering IO examples and
gray-box information, dominates the total time required to
produce a solution (>99.9%). No problems required more than
1,000 IO examples to be generated.

D. Validity

In Section V-A, we described how the KLEE symbolic
execution engine [11] can be used to model-check synthesized
programs against a reference implementation (if one exists).
Our results from the model-checking process are shown in
Table II; we did not identify any programs synthesized by
HAZE that exhibited significantly different behavior to the
corresponding reference implementation.

More precisely, we found that many synthesized programs
differed on minor floating-point arithmetic points when com-
pared to the reference (for example, synthesizing (a ∗ b) ∗ c
instead of a ∗ (b ∗ c) is technically incorrect in a non-
associative arithmetic). Because our input-output example-
based correctness checker adjusts for such cases using a ULP-

TABLE II: Results obtained from model-checking programs
synthesized by HAZE against their respective reference imple-
mentations. Many solutions demonstrated minor floating-point
inaccuracies that were explicitly not identified by observational
equivalence checks. However, beyond these cases no false-
positive synthesis results were identified.

N FP Assoc. Bugs Success

Presyn 103 11 0 100%
UTDSP 9 9 0 100%
DSPStone 13 13 0 100%
PolyBench 14 14 0 100%
Image 6 0 0 100%
Tensor 4 4 0 100%

based sliding equality check, such differences were common.
These examples are summarized as FP Assoc. in Table II.

After disregarding minor floating-point differences, no syn-
thesized programs (i.e. those judged to be correct with respect
to IO examples) were then judged to be incorrect by the model
checker (Bugs in Table II). This validates our IO example-
based approach to determining correctness.

E. Gray-Box Information

Figure 11 shows the complexity of components as synthe-
sized by HAZE. These provide a strong signal in determining
probable control-flow sketches. Similarly, Figure 12 shows
how prevalent the 10 most common instruction types are in
each of the 6 benchmark groups which guide data-flow selec-
tion when generating synthesized candidates. If we examine
each group, we see that UTDSP has a similar distribution
to Presyn with additional floating point arithmetic. Although
DSPStone tackles the same DSP domain, its implementation
produces a very different behavior with loads dominating.

F. Ablation Study

To determine the effect of each source of gray-box informa-
tion on HAZE’s synthesis performance, we performed a partial
ablation study by omitting sources of information in turn.

We constructed four variants of HAZE: Perf: Runtime
performance models only, no ranking of sketches, instructions
are sampled uniformly; Perf+Trace: Runtime performance
and memory traces; sketches are ranked but instructions



Fig. 11: Frequencies of observed potential complexity classes across our dataset of evaluation problems (with respect to scalar
parameters). Names of parameters have been standardized to n,m, p, . . . . The class f(n,m) includes all classes that are
both O(n) and O(m), for fixed m and n respectively (i.e. both O(nm) and O(n + m) are subsumed). Classes are ordered
approximately from left to right by increasing complexity.

Fig. 12: Normalized distribution of the 10 most common
instruction types for each group of benchmark problems.

are sampled uniformly. Perf+Dist: Runtime performance and
instruction distributions; no sketch ranking but instructions
are sampled from learned distributions. All: The full HAZE
implementation.

For each variant of HAZE, we attempted to synthesize each
problem in our evaluation dataset, and recorded the mean
number of candidates required to do so successfully. These
results are shown in Figure 13.

Adding each source of information produces a clear im-
provement to the achievable synthesis performance, though
they do so through different mechanisms. Perf+Dist discovers
programs with more instructions more quickly than the Perf
baseline.Similarly, the Perf+Trace variant allowed programs
with more complex control flow to be synthesized earlier.

Fig. 13: Cumulative successful syntheses as a proportion of
the entire evaluation dataset for four different versions of
HAZE (baseline using only performance models to select
sketches, adding memory traces and instruction distributions
respectively, and the full HAZE pipeline). The distribution of
successful syntheses is long-tailed, and so for clarity this figure
shows only the initial phase where the majority of successes
are achieved (< 500, 000) candidates evaluated). Parenthesized
values indicate the final success rate for each version; note that
in extremis, the version using memory traces outperforms the
one using instruction distributions.

Because problems with complex control flow are likely to
also require more instructions to be correctly identified, the
Perf+Dist variant requires more candidates to be evaluated
before beginning to return successes. By combining the two
approaches in HAZE, the initial phase of synthesis is as
productive as Perf+Dist alone, but is able to scale to complex
problems similarly to Perf+Trace.

G. Retargeting Case Study

Synthesized code can be searched for in an application [19],
and refactored to use an improved compatible implementation.
Although this paper is concerned only with the synthesis part
of this workflow, we performed a small case study on tensor
problems to demonstrate the benefit of our technique

a) Setup: We first evaluated the performance gained by
replacing the Haze synthesized programs with observationally
equivalent TACO GPU versions We then evaluated our ap-



Fig. 14: Speedup achieved using a GPU implementation for
each tensor operation synthesizable using HAZE.

proach on the MobileNet deep convolutional neural network,
compiled to C for distribution to edge devices [57]. Here. we
searched for instances of any of the successfully synthesized
tensor operations and replaced it with a call to an optimized
library implementation.

Our experiments were run on an Nvidia Jetson Nano de-
veloper kit using a Tegra T210 system-on-chip (4-core ARM
CPU, integrated GPU, 8GB shared memory). The optimized
tensor GPU implementations were generated using the Taco
compiler [33], using a 256 GPU thread execution strategy.

b) Results: Each of the four tensor computations syn-
thesizable by HAZE could be improved by moving execution
from the CPU to the GPU on the test device, with speedups
of 2–4×. as shown in Figure 14.

By replacing the MobileNet implementation of pointwise
convolution with the TACO-generated library call, we were
able to improve single-image inference time for the network
by 60%. These results show that by improving synthesis
ability, HAZE is able to enable new refactorings and increase
performance.

VIII. RELATED WORK

Prior work related to this paper can be broadly grouped as
lifting and synthesis, although there is considerable overlap
between the two areas.

A. Lifters

There are many papers targeting the lifting of low-level
representations to a specific higher form; they can be charac-
terized by the the type of low-level representation examined.

a) Code: Appropriately shaped kernels within existing
legacy programs are often the target for lifting to a domain-
specific language. For example, Kamil et al. [32] use a
classical, syntax guided CEGIS procedure to detect loops
compatible with Halide [46] in Fortran programs. Due to
the complexity of establishing loop invariants, significant
restrictions are made to reduce the search space. This work
was later extended to C++ programs [2].

b) Binary: Other approaches have gone one step further,
assuming that the source program is only available in binary
form. Rather than a narrow, high-level DSL, some work
tackles binary decompilation from binary to general purpose
languages such as C [22]. In some cases, these techniques lean
on ISA specifications to direct synthesis [30].

c) Memory-trace: An alternative approach makes fewer
assumptions about the code, focusing instead on observable
memory access behavior. Rodrı́guez et al. [48] analyze mem-
ory traces to recover polyhedral regions in code. This scheme
is time-consuming, and fails when the accesses under analysis
do not meet the strict requirements of the polyhedral model.
In Helium, [37] a similar approach is used to find 2D stencil
kernels in legacy image-processing binaries.

d) Other: Hardware behavior (such as power variation)
has been used as a side-channel attack, allowing partial
recovery of instruction sequences [23]. Such work requires
extensive modeling of the system, and is aimed at recovering
small instruction sequences for identification and attack rather
than trying to synthesize large scale libraries.

B. Synthesis

a) Formal: Often, an external formal specification is
provided to guide synthesis via, for example, CEGIS [1, 10].
Annotated type signatures or hints are often used to bias
search towards correct programs, most commonly for func-
tional programs [40, 41]. A key idea to making synthesis
scalable is sketching [54, 55]. Sketching has been used in
a large number of problem domains [24, 31, 52, 58] and
allows the separation of high level program structure from
detail. Typically, external hints or context are used to suggest
structure, while enumerative search fills in the holes.

b) Machine Learning: Automatically generating pro-
grams from examples is a long-standing research area known
as programming by example [28]. Recent work applying
machine learning to this area has examined both induction
(with a learned latent version of the program) and generation,
which uses a language model to generate programs [3, 21, 44].

Rather than building a generative model, some use input-
output examples to form priors over program distributions [8,
60]. However, schemes of this sort are typically limited to
small DSLs and need large amounts of generated training data.
Additionally, learned programs are often limited to a single
problem domain for which a suitably-sized DSL exists (for
example, list manipulation [38]).

c) Multi-modal: The use of multiple modalities of spec-
ification has been explored (for example, by using natural
language text descriptions [36]). It has also been used for API
migration, leveraging the large amount of work in natural lan-
guage processing [42]. In SKETCHADAPT, such descriptions
of programs are used alongside IO examples as multi-modal
priors to drive probabilistic synthesis of string manipulation
programs. More recently, Chen et al. [15] use IO examples and
text descriptors in the domain of regular expression induction.
However, in both cases, the approach does not generalize
outside these restricted task-domains.

IX. CONCLUSION

This paper develops a new program lifting approach using
gray-box behavior, automatically constructing a program to
match the behavior of an unknown component. It generalizes
across domains, synthesizing and lifting more programs than



prior techniques, without any external assistance. We validate
our methodology using bounded model checking, demonstrat-
ing that our synthesized programs are correct. We apply our
approach to machine learning workloads, obtaining significant
speedups automatically. Future work will investigate other
gray-box information to further improve performance.
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