
Program Synthesis for Heterogenous

Accelerators

Bruce Collie

T
H

E

U N I V E R
S

I
T

Y

O
F

E
D I N B U

R
G

H

Master of Science by Research

School of Informatics

University of Edinburgh

2018

Abstract

Heterogenous architectures and workload-specific accelerators can provide significant

performance improvements across many problem domains. However, their use by

developers is limited—integrating accelerators with a program is difficult and often

produces non-portable code. Existing work to solve this problem has focused on

compiler-based detection and rewriting of code to run on a particular accelerator. De-

spite promising results, this approach still requires significant manual effort by the

developer to support new accelerators.

To reduce the effort of integrating accelerators with code, we aim to automatically

learn a model of their behaviour. A model learned in this way can be used with ex-

isting tools to map code to the accelerator, without the programmer having to write

accelerator-specific code to do so. Our approach to this problem is to use program

synthesis to synthesise programs that behave equivalently to an accelerator.

We select linear algebra as a test domain, and show that our program synthesiser

(AccSynt) is able to synthesise programs with complex nested control flow and data ac-

cess patterns. Additionally, we describe an experimental case study that demonstrates

the potential performance gains from using accelerators in this domain, and show how

these results relate to our program synthesis techniques.

iii

Acknowledgements

My sincerest thanks go to my supervisor, Professor Michael O’Boyle, for his ever-

present help and insightful conversations throughout this project. Thanks also to Philip

Ginsbach for his technical assistance and invaluable tools, and to the other Pervasive

Parallelism students for excellent company throughout the year. Finally, I am forever

grateful to my family and girlfriend Alice for their continual love and support of my

work.

This work was supported in part by the EPSRC Centre for Doctoral Training in

Pervasive Parallelism, funded by the UK Engineering and Physical Sciences Research

Council (grant EP/L01503X/1) and the University of Edinburgh.

iv

Declaration

I declare that this thesis was composed by myself, that the work contained herein is

my own except where explicitly stated otherwise in the text, and that this work has not

been submitted for any other degree or professional qualification except as specified.

(Bruce Collie)

v

Table of Contents

1 Introduction 1

2 Related Work 5
2.1 Heterogenous Computing and Accelerators 5

2.1.1 Accelerator-Friendly Workloads 6

2.1.2 Using Accelerators in Programs 7

2.1.3 Summary . 8

2.2 Mapping and Optimisation . 8

2.2.1 Domain-Specific Languages 9

2.2.2 Runtime Libraries . 10

2.2.3 Automatic Mapping . 11

2.3 Program Synthesis . 11

3 Background 15
3.1 Program Synthesis . 15

3.1.1 Definitions and Terminology 16

3.1.2 Challenges and Difficulties 17

3.1.3 Summary . 18

3.2 LLVM . 18

3.3 Sparse Linear Algebra . 19

3.3.1 Storage . 20

3.3.2 Matrix-Vector Multiplication 21

4 Case Study 23
4.1 Finding SPMV in Code . 24

4.2 SPMV Benchmark Suite . 25

4.3 Benchmark Results . 26

4.3.1 Experimental Setup . 26

vii

4.3.2 Results . 27

4.4 Predicting Performance . 28

4.5 Summary . 30

5 Implementation 31
5.1 Framework . 32

5.1.1 Synthesizer Interface . 32

5.1.2 Technical Details . 32

5.1.3 Summary . 34

5.2 AccSynt . 34

5.2.1 Parameter Annotations . 35

5.2.2 Loops . 36

5.2.3 Synthesis . 39

5.2.4 Summary . 44

6 Evaluation 45
6.1 Expressivity . 45

6.1.1 Linear Algebra Problems . 46

6.1.2 Unsupported Patterns . 49

6.2 Performance . 50

6.2.1 Synthesis Time . 50

6.2.2 Stochastic Methods . 51

6.3 Summary . 52

7 Conclusion 53
7.1 Future Work . 54

7.1.1 Control Flow and Components 54

7.1.2 Code Search . 55

7.1.3 Generalising AccSynt . 55

viii

Chapter 1

Introduction

There is an increasing trend in hardware development towards heterogeneous devices

and workload-specific accelerators. The slowing down of Moore’s law and Dennard

scaling mean that general-purpose processors are no longer the most effective choice

for many problem domains; the power consumption and design constraints imposed by

generality mean that dark silicon is widespread in traditional processors. Many prob-

lem domains (for example, machine learning, ubiquitous computing and signal pro-

cessing) now rely on specialised accelerators to maximise their performance to power

ratios. Such accelerators are available in many different forms—optimised software

libraries, architecture-specific methods and specialised hardware designs are all com-

mon.

Making effective use of accelerators requires a detailed understanding of the per-

formance characteristics of a particular problem—there are often overheads involved

in using them that confound the potential benefits. For example, using a graphics pro-

cessing unit (GPU) to accelerate data-parallel problems is often only worthwhile for

suitably large instances; for smaller cases the time taken to copy data between the host

and the device can be prohibitive. In general, using accelerators can lead to signifi-

cant performance improvements, but only when used judiciously. Even allowing for

these potential downfalls, accelerator usage has become widespread across a number

of problem domains, a trend that shows no sign of slowing down.

Despite their newfound ubiquity, making use of accelerators from application code

is not easy. Detailed knowledge of both its source code and the accelerator’s behaviour

are required, and even when an accelerator is integrated the resulting code is unlikely

to be portable. Ideally, this task should be done by the compiler. It should be able to

identify code that can be run using an accelerator at compilation time, and to replace

1

2 Chapter 1. Introduction

this code with usages of the accelerator without involving the programmer. By doing

this, the programmer can separate their algorithmic intent and program design from

the constraints imposed by specific accelerators. Another benefit of this approach is

that the program will remain portable to different accelerator implementations in the

future, providing they are compatible with the compiler integration.

There are several facets to this type of compiler integration. We must be able to

identify code that matches a particular pattern—that is, given a compiled program,

what sub-programs meet a set of structural requirements? Then, we must be able to

transparently rewrite this code to use an accelerator interface. These must both be

written manually by a programmer for each new accelerator supported. The compu-

tational patterns supported and the code rewriting required are different for each and

cannot be extracted automatically from an accelerator. Recent and current work is

concerned with code discovery and rewriting, and so we focus on the third problem:

given an accelerator, how can we automatically determine the computational idioms

it supports? Answering this question would allow programs to automatically support

future accelerators using current tooling for discovery and rewriting.

Figure 1.1 shows the different parts of this problem, and the dataflow between

them. Ideally, we would be able to match user code to arbitrary accelerators, while also

selecting the accelerator with the best performance for a particular workload. Existing

work can match code to individual accelerators, but being able to do so for arbitrary

acclerators is an open question. The work in this dissertation aims to learn a model for

the behaviour of arbitrary accelerators, and to build a performance model for them that

can be used to select the most efficient one at run time.

In order to support any possible future accelerator, we must be able to express

behaviours in a fully general way—any restriction on how behaviour is described might

prevent some types of accelerator from being supported in the future. This means that

techniques such as classifying an accelerator’s functionality as one particular choice

from a group of options using machine learning are not the most suitable. Perhaps

the most natural way to express computational behaviour in a general way is in fact

as a program in some language. That is, any accelerator’s behaviour could in fact be

expressed as a program. Then, given such a program we would be able to reason about

its structure—by comparison, the original accelerator would be a “black box”.

Choosing an executable program as a model we aim to learn leads us naturally to

program synthesis as a methodology. A subcategory of machine learning, program

synthesis aims to automatically generate programs that are correct with regard to a

3

Code Compiler Program

Model ...A0 AN

Learner

Figure 1.1: Data flow in a system performing compilation and acceleration of user pro-

grams. The components highlighted in red are a naïve system that simply compiles

user code with no accleration. Recent work uses a handwritten model to match code to

a set of accelerators A0, ...,AN—this is the system highlighted in blue. The work in this

dissertation aims to implement the system shown in green—given a set of accelerators,

how can we learn their behaviour and use this to build a model compatible with existing

tools for matching code?

specification of some kind. This is in general a hard problem—the space of potential

programs that could be generated is enormous, and it is often difficult to prove that a

solution is in fact correct. However, much prior work on the subject is available to draw

upon for a solution. While program synthesis is not an obvious solution to the problem

of matching user code to available accelerators, for the problem stated above with the

given constraints it is a reasonable suggestion. In this dissertation we aim to develop

a program synthesis-based solution to the problem of learning a model for accelerator

behaviour, and to evaluate to what extent these techniques allow for generality in the

solution.

The remainder of this dissertation is organised as follows. In Chapter 2, we review

related work, covering three broad areas: the development of heterogeneous hardware

and accelerators, mapping code effectively onto available accelerators, and program

synthesis. We describe several example domains to which accelerators can be usefully

applied, giving examples from recent work to demonstrate their application. Then, we

4 Chapter 1. Introduction

examine current methods for mapping code onto accelerators—these methods are use-

ful, but often still require a great deal of manual effort on the part of the programmer.

Finally, we examine similar work in program synthesis, showing that applying it to

learning accelerator behaviour is a new technique with little similar work in the litera-

ture. Chapter 3 provides a brief technical background to the dissertation; it describes

the tools and libraries used to implement our program synthesiser, introducing impor-

tant concepts and terminology. As well as this, we give a short overview of sparse

linear algebra techniques that can be used as a reference throughout the rest of the

dissertation.

Chapter 4 describes an experimental investigation into the performance improve-

ments that can be achieved using accelerators for sparse linear algebra workloads. This

investigation examines four CPU (central processing unit) and GPU implementations

of sparse matrix-vector multiplication across different host platforms. In the best case,

the accelerator implementation improves performance by more than 50× compared

to a naïve sequential implementation. However, these gains are not consistent—some

workloads are not improved by accelerator usage. To remedy this, we describe a pre-

dictive model that is able to accurately select the best possible accelerator for a given

problem at run time. This model combined with the accelerator implementations mo-

tivates the implementation work in subsequent chapters.

The primary artifact produced during the course of this dissertation is AccSynt,

a program synthesiser that aims to synthesise programs that match the behaviour of

an accelerator. Its implementation is split into a general framework for performing

program synthesis, and a specific component that is more focused on the initial set of

interesting accelerators. This implementation work is described in Chapter 5, along

with descriptions of the core algorithms and ideas used to synthesise programs. Chap-

ter 6 evaluates this work with respect to the range of programs that can be synthesised,

as well as the time taken to do so. Finally, Chapter 7 summarises the contributions

made in this dissertation, and identifies a number of areas for potential future work. In

particular, we identify several possible ways in which the specific synthesis methods

used in AccSynt can be generalised to further problem domains.

Chapter 2

Related Work

In this chapter we review existing literature with respect to three key questions related

to the problem statement identified in Chapter 1. First, in Section 2.1, we examine

recent work in accelerators and heterogenous computing—what form do accelerators

normally take, and what interfaces do they present to host programs? Then, Section 2.2

examines existing approaches to the automatic mapping of code to accelerator devices.

In particular, we look at how host programs can currently be written or adapted to

use an accelerator, and the state of current work on automatic code discovery and

rewriting to use an accelerator. Finally, in Section 2.3 we review existing work in

program synthesis, with particular focus on how it has been used previously to learn

the behaviour of hardware systems, finding that there is little or no work related to

accelerators and heterogenous devices in the program synthesis literature.

2.1 Heterogenous Computing and Accelerators

There is a recent trend in computer architecture towards designing heterogenous sys-

tems. These systems are made up of multiple components, each of which has a dif-

ferent architecture or function within the system—for example, GPUs have instruction

sets that are designed for very high data parallelism, while digital signal processors typ-

ically have good support for multiply-accumulate, saturating arithmetic or ring-buffer

memory access. A large number of new heterogenous devices are being designed ev-

ery year, with applications to many different problem domains such as cryptography

[9], bioinformatics [45] and deep learning [27, 35].

Zahran [48] argues that the trend towards heterogenous computing will continue

for the foreseeable future, and that our perspective towards hardware and software de-

5

6 Chapter 2. Related Work

velopment must change to incorporate heterogenous principles. There are a number

of reasons for this. Perhaps the most critical is the demise of Moore and Dennard’s

respective laws—transistor density and power consumption are no longer scaling as

quickly as they have been for the past fifty years. As a result, alternative chip designs

are now the most viable option for many computationally intensive workloads. As a

representative example, Jouppi et al. [27] at Google describe the implementation of

their tensor processing unit (TPU) chip; an analysis showed that a small increase in

their usage of deep neural network inference would double their datacenter computa-

tion demands using existing methods. They achieve an improvement of up to 80× in

the performance to power ratio when compared to a typical CPU+GPU implementation

of the same inference tasks.

Heterogenous devices are one instance of what we will refer to throughout this

dissertation as accelerators—any method of improving the performance of a compu-

tational workload with regard to a particular metric. These methods could be software

or hardware, and the performance metric could be speed, energy efficiency, or indeed

anything applicable to the workload in consideration. This definition is intentionally

broad; we examine the potential improvements from using accelerators without being

overly concerned about their underlying implementation.

With these definitions in mind, the remainder of this section deals with the follow-

ing two questions: when is it viable to use an accelerator to improve performance of

a system, and how can software authors effectively integrate accelerators with their

code?

2.1.1 Accelerator-Friendly Workloads

The primary limiting factor to the use of accelerators is whether or not the system in

question has a computational bottleneck. If the work performed by a system is un-

predictable or very varied, it is unlikely that an accelerator will be able to provide

performance improvements. For example, deep learning inference systems are bot-

tlenecked largely by the performance of matrix multiplication routines—suitably fast

implementations of these routines are able to speed up inference while also reducing

power consumption [27]. A slightly different example is the always-on motion copro-

cessor in the iPhone; the ability of the phone to provide constant motion analysis and

recording is bottlenecked by the power consumption of the primary processor. Us-

ing the low-power coprocessor enables the efficient implementation of a workload that

2.1. Heterogenous Computing and Accelerators 7

would not otherwise be possible.

Secondly, an application needs to match the functionality offered by an accelerator

precisely in order to take advantage of the improved performance. An example of when

this may not be the case is when application code implements a task using a different

data format to the one accepted by the accelerator. This type of mismatch requires

extra marshalling to be performed in order to use the accelerator, which in some cases

can negate any performance gain.

In general, to make use of an accelerator an application needs a consistent bottle-

neck expressed in a manner compatible with the accelerator.

2.1.2 Using Accelerators in Programs

Even if an application has a bottleneck which is compatible with an accelerator, inte-

grating code with the accelerator can be challenging. The range of interfaces offered

by accelerators is very broad—some offer runtime support libraries for user programs,

while others provide a direct memory access (DMA) interface that needs to be wrapped

with a device driver [47]. The Google TPU [27] is only accessible through a Tensor-

flow wrapper running on their own cloud computing platform, and many papers only

present a hardware description language design that must be synthesized alongside an-

other chip to act as a coprocessor [9, 45]. Table 2.1 gives a brief overview of how much

work is required to integrate accelerators with different types of external interface into

a program.

Even once a suitable accelerator interface is available, matching this to an exist-

ing program is a non-trivial task—program structure can be arbitrarily complex, and

rewriting sections to use the accelerator interface entails a great deal of work on the

part of the programmer responsible. Automated methods for mapping existing code

[16] or high-level algorithmic designs [42] onto accelerators exist, but require detailed

knowledge of the accelerator being targeted in order to map the code.

Throughout the rest of this dissertation, we can assume that a software interface to

any accelerator is available. This type of interface will almost always take the form of

a C function call. In general, adapting an existing application to use an accelerator can

require significant engineering work beyond the initial development of the application.

We provide a more detailed overview of work related to automated mapping of code

to accelerators in Section 2.2.

8 Chapter 2. Related Work

Accelerator Interface Work Required to Integrate

Software interface to specialised CPU

features or instructions

Calls to library functions, no extra hard-

ware required

Software interface to external hardware Calls to library functions, appropriate in-

terconnect (e.g. a serial bus protocol or

over a network)

DMA interface to external hardware Implementation of device driver, calls to

driver interface, appropriate interconnect

Hardware description language design Synthesis of design to a reconfigurable

architecture, implementation of device

drivers, calls to driver interface, appro-

priate interconnect

Table 2.1: Comparison of the work required to integrate different accelerator interfaces

into a user program.

2.1.3 Summary

Heterogenous devices and accelerators can provide significant performance improve-

ments across a variety of different workloads and evaluation metrics—improved through-

put, energy efficiency and availability are all possible depending on the workload. Be-

cause of recent trends in the performance of traditional general-purpose processors, it

is likely that a further move towards heterogenous methods is on the horizon. However,

practical integration of accelerators into user programs is still not as simple as it could

be—finding an appropriate accelerator and matching it to program structure requires a

lot of manual engineering effort.

2.2 Mapping and Optimisation

One of the primary goals of our work is to enable software optimisation by mapping

code to accelerator devices. We aim to do this by automatically learning the behaviour

of accelerators through program synthesis, such that the synthesised programs can

later be used with existing tools to discover similar code in programs. We now give an

overview of alternative techniques related to the discovery of code suitable for accel-

2.2. Mapping and Optimisation 9

eration and the automatic mapping of this code to run on accelerators.

There are several common approaches to the problem of efficiently mapping a pro-

grammer’s intent to the most efficient accelerator implementation. The three most

common approaches are to use runtime support libraries for the accelerator, a domain-

specific library, or to automatically map code onto the accelerator. In this section we

give an overview of important work using each of these approaches, and discuss how

they relate to our goal of learning models for accelerator behaviour.

2.2.1 Domain-Specific Languages

A domain-specific language (DSL) is a programming language that is highly spe-

cialised for a single task or problem domain. They express a limited set of highly

specialised operations, and are typically designed to make it easier for users to write

programs in that problem domain. Uses for DSLs are very diverse—configuration lan-

guages, build systems and unit test descriptions are commonly built using a DSL. For

performance-critical problem domains where using an accelerator is beneficial, a DSL

is useful because it limits the scope of operations expressible in the language. This

means that programs can be more easily mapped onto supported accelerators, and that

whole-program optimisation is feasible.

Halide [37] is a DSL for expressing image processing pipelines. By using Halide,

the algorithmic description of a pipeline can be decoupled completely from perfor-

mance concerns such as cache-friendliness or data-dependency. The programmer is

able to write their code at a high level of abstraction, while still taking advantage

of domain-expert knowledge for optimisation. Another DSL for image processing is

PolyMage [33], which uses an automatic parameter search to find the optimal im-

plementation for a particular pipeline—they go on to show that this approach gives

performance on par with hand-tuned Halide code.

Spampinato and Püschel [40] demonstrate LGen, a DSL for implementing linear

algebra programs. They make the observation that existing linear algebra acceleration

is biased towards large-scale problems, but that generating optimal code for smaller

problems can also provide performance improvements. Similar approaches exist for

other domains such as Fast Fourier Transforms [14].

Lift [20, 42] is a functional language designed to be compiled to OpenCL. The au-

thors deliberately distinguish Lift from DSLs such as Halide—Lift is a general purpose

language that can be applied to many distinct problem domains (for example, image

10 Chapter 2. Related Work

processing, machine learning and stencil programs are all well supported). However,

for any particular domain Lift shares some philosophy with DSLs. The language is

made up of a set of primitive operations, and it uses parameter tuning based on pro-

gram rewrite rules to optimise programs.

A disadvantage of using a DSL is that they may not be easy to integrate with exist-

ing application code. Halide sidesteps this issue by writing the DSL using expressive

C++ code—this is known as an EDSL (embedded DSL). This approach is popular, but

typically relies on syntactic support from a host language for expressivity. Examples

of EDSLs are CλaSH [2] and Chisel [3]; both are used to describe hardware designs

as functional programs. In general, however, if a DSL is not designed with interoper-

ability in mind it can be difficult to integrate them into other programs.

2.2.2 Runtime Libraries

Writing performance-critical code using a DSL allows for high-level intent to be ex-

pressed clearly in a suitable language. However, using a DSL may not be well-suited

to all programs—for example, if the program requires logic that cannot be expressed

using the DSL, or if it cannot be easily integrated with the DSL’s interface. In these

scenarios, it is beneficial to use a lower-level approach that expresses individual op-

erations to a host program. Typically, this is achieved by using a runtime library that

provides a convenient interface to well-optimised implementations of performance-

sensitive operations. Doing this allows the programmer to decide precisely when to

use an optimised implementation, and to integrate these operations tightly with their

own code.

This approach is common for linear algebra workloads—many libraries conform

to the standard BLAS interface, which describes low-level “building blocks” for linear

algebra programs [6]. Other libraries such as SparseX [12] and pOSKI [8] provide

highly specialised implementations of sparse linear algebra by performing automatic

tuning based on characteristics of the host hardware and the problem at hand. Libraries

are also made available by device manufacturers specifically for their hardware—for

example, Intel’s Math Kernel Library [24].

In general, any software interface to an efficient implementation of a workload falls

into this category. Providing an interface of this kind is more convenient for the library

developer (no need to write a new DSL) and for the programmer (no need to learn the

DSL and easy integration with existing code). However, this comes at the expense of

2.3. Program Synthesis 11

the opportunity for holistic optimisations afforded by a DSL.

2.2.3 Automatic Mapping

The goal of automatic mapping is to take a naïve user program and automatically work

out where an optimised implementation could be applied. This would allow program-

mers to write programs without being locked into a particular accelerator implementa-

tion, or even without knowing how to accelerate the program at all.

For obvious reasons, doing this for arbitrary programs is a hard problem. Even if

we know the exact behaviour of an accelerator, finding code that can be run using it

is difficult. Ginsbach and O’Boyle [15] describe their interface description language,

a constraint-based method for discovering computational idioms in compiled code—

they use this approach to discover several different patterns that can be run using an

accelerator [16]. For a given accelerator implementation, this allows for compatible

code to be easily discovered. However, mapping this code onto an accelerator requires

writing a compiler pass to rewrite the target program. Recent prototype work from the

same authors aims to make it easier to map discovered idioms to multiple implemen-

tations. Their work uses a new DSL to describe the mapping process.

Compared to the volume of work related to implementing DSLs and runtime li-

braries, there is very little work related to automatic mapping. The task is difficult, and

developers are capable of writing code that targets efficient implementations. Exist-

ing work on automatically discovering opportunities for improved performance in user

code have so far focused on local properties such as peephole optimisations [31, 32] or

superoptimisation [36, 38]. However, these approaches do not apply to performance

opportunities from accelerators—the patterns discovered using a constraint-based ap-

proach can span large non-local regions of compiled code.

2.3 Program Synthesis

Gulwani, Polozov, and Singh [19] describe in depth the difficulty of performing pro-

gram synthesis—the search space of possible programs is intractibly large, and user

intent can be expressed in any number of different ways. As a consequence of this, al-

most all research in program synthesis involves an element of search space reduction.

The exact nature of this search space reduction depends on the synthesis algorithm

in question. For example, the syntax-guided approach in [1] has the user supply a

12 Chapter 2. Related Work

syntactic template for possible solutions, while Godefroid and Taly [17] use a “smart

sampling” method to select the best possible test case for disambiguating candidate

solutions.

In the context of learning a model for an accelerator, the program synthesiser has

no domain-specific information about the structure of potential solutions—the acceler-

ator being learned could be performing any arbitrary computation. This means that any

information that can narrow the search space of potential programs must be supplied

by the user of the synthesiser, an idea that is not uncommon in the program synthesis

literature. Syntax-guided synthesis [1] is an instance of this idiom, where the infor-

mation supplied is the syntactic form of a potential solution. Similarly, SKETCH [39]

has the user supply a series of statements that might appear in a program, alongside

potential syntactic templates. A slightly different angle is taken by Leung, Sarracino,

and Lerner [29], who synthesise parsers for a grammar by querying the user interac-

tively for disambiguating examples. Even more distinct is CLGen [Cummins2017a],

which uses recurrent neural networks to generate syntactically valid programs that can

be used for compiler fuzzing.

Oracle-guided program synthesis [25, 26] describes a group of techniques that

share a common style. An oracle specification refers to any interface that can answer

queries about the synthesis problem or potential solutions to it. Commonly, the type of

oracle found in practical examples is an input-output oracle—one that can supply the

correct output for a given input. The prevalence of this type of oracle is due in part to

work on programming by example, where a user supplies a set of examples by hand,

which are to be generalised into a program. This has been applied successfully to string

processing in spreadsheets [18], compiler fuzzing [5], processing algebraic datatypes

[34], and database query synthesis [46]. In the context of this dissertation, accelerators

can be viewed as input-output oracles; it is easy to get an output that corresponds to

an input, but hard to get any further information. This view means that previous liter-

ature related to oracle-guided synthesis is likely to be relevant to the work done in this

dissertation.

Studying the behaviour of hardware devices using program synthesis is not a com-

mon use case, especially with regard to heterogenous devices and accelerators. The

closest analogue in the literature is a body of work with the common goal of learn-

ing semantics for CPU instruction sets. For example, Godefroid and Taly [17] learn

bit-vector representations of x86 instructions using input-output examples. Similarly,

Heule et al. [23] learn the semantics of the same instruction set by using a ‘stratified’

2.3. Program Synthesis 13

synthesis approach that composes previous results to reach a solution at each synthesis

step. Other work uses a compiler back-end to synthesise instruction semantics that

can be used for decompilation [Hasabnis2015, 21, 22]. Lim and Reps [30] learn the

semantics of machine code in order to build generic tools for analysing binaries.

Chapter 3

Background

This chapter gives an overview of the technical background to the project as follows:

Section 3.1 introduces the field of program synthesis, defining key terminology and

summarising important results and techniques. Then, in Section 3.2, we give an intro-

duction to LLVM [28] and the compiler-based tooling used to implement AccSynt, the

program synthesiser described in Chapter 5. Finally, Section 3.3 summarises the mo-

tivation for sparse linear algebra techniques, giving a brief description of the relevant

formats and algorithms. Chapter 4 motivates and makes use of these sparse methods;

this chapter acts as a technical reference for the case study.

3.1 Program Synthesis

Being able to automatically generate a program based only on a specification has been

a goal of computer science research for nearly sixty years [13]. At the highest level,

the problem statement is to accept a specification that a correct program should satisfy,

and then to subsequently produce such a program. Different applications of program

synthesis use different representations for programs and specifications. There therefore

exists a wide variety of different algorithms and concepts within the scope of program

synthesis. In this section we give a brief summary of important terminology and defi-

nitions from program synthesis, along with an overview of significant algorithms and

techniques, and a discussion of the difficulties associated with program synthesis.

15

16 Chapter 3. Background

3.1.1 Definitions and Terminology

Throughout the rest of this dissertation, we will make reference to some key definitions

from program synthesis. These definitions are given below along with some running

examples from the literature.

Program A structured representation of a computation. For example, Heule et al. [23]

synthesise bit-vector formulae as their ‘programs’, Srinivasan and Reps [41] deal

with linear sequences of machine code instructions, and Gulwani [18] builds

string-manipulation programs by composing components from a library. These

three choices are all conceptually very different, but can each be seen as a com-

putation mapping inputs to outputs. The choice of a program representation is

strongly dependent on the synthesis problem in question.

Specification Programs can only be evaluated as correct or incorrect with respect to

a specification—a logical formula that determines the set of correct programs.

Much like the representation of the program being synthesized, the representa-

tion of the specification also depends on the problem domain. Both Gulwani [18]

and Heule et al. [23] use input-output pairs as their specification—a synthesized

program is then judged to be correct if its behaviour matches all the examples.

Srinivasan and Reps [41] use bit-vector formulae to fully describe the desired

behaviour of a sequence of machine-code instructions (note that the program

representation in one application can be treated as the specification in another).

Oracle Guidance The string processing examples used by Gulwani [18] as a spec-

ification are given by human users to describe their desired behaviour, while

Heule et al. [23] observe the behaviour of individual machine code instructions

to collect their examples. This second approach treats each instruction as an or-

acle—an interface that can be queried to produce a partial specification (in this

case, input-output examples).

Jha and Seshia [25] formalise the role of oracles in program synthesis, giving

definitions and analyses for the different types of response that an oracle can

provide to a synthesiser (for example, providing new input-output pairs, eval-

uating whether a given output is correct for an input, or checking correctness

for a whole program). Typically, oracle-guidance is used in situations where a

synthesized program aims to match the behaviour of a ‘black box’ whose inter-

nal structure is not known. Knowledge of structure generally allows for more

3.1. Program Synthesis 17

sophisticated specifications to be given.

3.1.2 Challenges and Difficulties

At the core of program synthesis research is the difficulty of identifying a correct so-

lution from an intractably large space of potential programs. Exhaustive searches are

not practical, purely because the number of solutions to evaluate is too large—as a

consequence of this, there is a focus in synthesis research on intelligent reduction of

search spaces. For example, Solar-Lezama [39] reduce their search space by having

the user specify a partial structure for the program being synthesized. Heule et al. [23]

do so by starting with a small set of target programs, then expressing later programs in

terms of the solution to earlier ones. In general, this type of search space reduction is

important to ensure that reasonably large programs can be synthesized.

There are a number of different approaches to the process of actually synthesizing

candidate programs. Some approaches rely on being able to encode their program

structure so that it can be understood by an “off the shelf” logical solver. For example,

Godefroid and Taly [17] use an SMT (satisfiability modulo theories) solver to check

the correctness of their candidate programs. This approach relies on being able to

encode the behaviour of a candidate as an SMT problem, but has the advantage that

solutions can be conclusively proven correct. Others synthesize programs where a

formal semantic model cannot be obtained, and so correctness must be checked by

executing the program on test inputs. While this technique cannot give concrete proof

of correctness, it is conceptually simple and can provide ‘good enough’ assurances

when proof is not possible. Schkufza, Sharma, and Aiken [38] synthesise optimal

machine code programs, then evaluate correctness using a novel method for comparing

target register values to the results produced by the synthesized program. A logical

encoding of the programs they synthesise is not practical because of the complexity of

the instructions used to construct their candidate programs.

Random sampling methods are a common approach to the task of generating can-

didate programs, and weighting the probability distribution that programs are drawn

from can be seen as another way of reducing the search space. Schkufza, Sharma, and

Aiken [38] use Monte Carlo sampling methods to sample programs that are closer to

a correct solution more frequently, while Phothilimthana et al. [36] run a stochastic

search in parallel to an enumerative one. With little a priori knowledge of what a can-

didate program looks like, random sampling is an effective way of finding candidate

18 Chapter 3. Background

programs.

3.1.3 Summary

Program synthesis can be used to automatically produce correct solutions to a compu-

tational problem, or to extract a semantic model for a ‘black box’ where no internal

structure is known. It can be applied to a number of different research domains, such

as text manipulation, superoptimisation of binary code, and discovery of formal se-

mantics. The large search spaces involved in program synthesis means that random

sampling methods are common, along with techniques for reducing the search space

of candidate programs.

3.2 LLVM

In Chapter 5 we describe the implementation of AccSynt, a program synthesizer that

can be used to learn the behaviour of accelerators using input-output queries to their

interface. The programs AccSynt synthesizes are functions expressed in LLVM [28]

intermediate representation (IR). In this section we give a brief overview of LLVM and

why AccSynt uses it as a target for synthesis.

Traditional compilers commonly represent their intermediate code using single

static assignment (SSA) form. In this form, variables are assigned to exactly once,

and are therefore immutable once assigned. This makes the code more amenable to

certain analyses. LLVM IR is in SSA form, and replaces all high-level control flow

with conditional tests and branches between basic blocks (linear regions of code a sin-

gle entry and single exit point). However, type information such as aggregate structures

and integer bitwidths is retained in the IR. As a result LLVM IR occupies a concep-

tual space between C and assembly code—the structure is simple enough to facilitate

machine analysis, but enough information is retained that it is easily understood by

humans. Figure 3.1 compares a simple C function with LLVM IR it could reasonably

be compiled to.

LLVM is a large open-source project with excellent support for generating and ma-

nipulating IR programs, as well as for just-in-time (JIT) compilation. The original

purpose of this was to facilitate compiler optimisations and JIT backends for program-

ming languages, but these features are also well suited for program synthesis tasks—

programs can be constructed and executed without reinventing a target programming

3.3. Sparse Linear Algebra 19

1 int func(int x, int y)

2 {

3 if(x < y) {

4 return x;

5 } else {

6 return y + x;

7 }

8 }

compile

1 define i32 @func(i32 %x, i32 %y) {

2 %cond = icmp slt i32 %x, %y

3 br i1 %cond, label %if_t,

4 label %if_f

5 if_t:

6 ret i32 %x

7 if_f:

8 %sum = add i32 %x, %y

9 ret i32 %sum

10 }

Figure 3.1: Comparison between C code and equivalent LLVM IR—all values are

named explicitly in SSA form and control flow has been lowered to conditional tests

and branches.

language and runtime. For this reason, AccSynt targets LLVM IR with its generated

programs.

3.3 Sparse Linear Algebra

Linear algebra workloads are commonly targeted by accelerators. This is due in part

to their ubiquity across a variety of different problem domains—for example, scien-

tific simulation, graph algorithms and machine learning all make use of linear algebra.

In Chapter 5 we describe work done benchmarking different accelerators and build-

ing a predictive performance model for sparse linear algebra workloads. This section

provides a brief introduction to these methods.

A sparse matrix is one where a large proportion of elements are zero. Storing

such a matrix in a traditional dense format entails a lot of redundancy—sparse formats

only store the non-zero elements of the matrix together with information about their

location, allowing for more compact storage if there are very few non-zeros.
1 2 3 4

4 6 8 0

3 1 6 8

3 0 1 1

0 0 1 0

0 0 2 3

0 0 0 0

4 0 0 0

Figure 3.2: Two 4×4 matrices—one dense and one sparse.

20 Chapter 3. Background

3.3.1 Storage

There are several different formats in which a sparse matrix can be stored, each with

their own advantages and disadvantages. Perhaps the simplest of these is these is

the coordinate format (COO), where the non-zero entries in the matrix are stored as

triples (row,column,value). For example, the sparse matrix in Figure 3.2 would be

represented (using zero-based indexing) as:

COO = [(0,2,1),(1,2,2),(1,3,3),(3,0,4)].

The coordinate format is most commonly used for input and output of matrices

rather than as an efficient representation for linear algebra workloads—it is easily un-

derstood by users when represented textually and can be converted to other formats as

required.

Matrix-vector multiplication is one of the most common linear algebra routines,

and so a sparse matrix format that permits an efficient implementation of this is desir-

able. The compressed sparse row (CSR) meets this requirement by storing non-zero

elements as a single contiguous array A, together with an array JA giving the column

index of each non-zero element, and an array IA that stores a cumulative sum of the

number of non-zeros in each row. Again referring to the sparse matrix in Figure 3.2,

these arrays are:

A = [1,2,3,4]

IA = [0,1,3,3,4]

JA = [2,2,3,0]

The first element of IA is always 0, and each successive element satisfies:

IA[i] = IA[i−1]+nnzInRow(i−1).

As a consequence of this, pairs of elements in IA give ranges in A and JA in which

elements in a particular row can be found. A and JA both have size equal to the number

of non-zero elements, while IA has one more element than the number of rows in the

matrix.

Variations on CSR exist, such as blocked compressed sparse row storage (BCSR)

which stores dense blocks of elements rather than individual non-zeros. This can result

in higher performance for some problem domains, but is less commonly used than

regular CSR. Dual to CSR is the compressed sparse column format (CSC) which stores

non-zero elements in column-major order.

3.3. Sparse Linear Algebra 21

3.3.2 Matrix-Vector Multiplication

Sparse matrix-vector multiplication (SPMV) is one of the most common sparse linear

algebra tasks. In Chapter 5 we describe a series of experiments investigating the per-

formance of SPMV using different accelerators in the CSR format—in this section we

introduce the baseline sequential implementation of SPMV for a CSR matrix for the

purposes of comparison.

1 void csr_spmv(double *out_vec,

2 double *A, // non-zero values

3 double *in_vec,

4 int *IA, // row ranges

5 int *JA, // column indexes

6 int n_rows)

7 {

8 for(int i = 0; i < n_rows; ++i) {

9 // Outer loop over all rows in matrix

10 double sum = 0.0;

11 for(int j = IA[i]; j < IA[i+1]; ++j) {

12 // Inner loop over non-zeros in row i

13 // JA[j] is the column index of the current non-zero

14 sum += A[j] * in_vec[JA[j];

15 }

16 out_vec[i] = sum;

17 }

18 }

Figure 3.3: C implementation of SPMV for a CSR matrix and dense vector.

Figure 3.3 shows how SPMV can be implemented in the CSR format using the def-

initions above. This algorithm is efficient because the non-zero elements in the matrix

are stored contiguously, and are iterated over in order. Later sections will refer back

to this implementation as a performance baseline that accelerated implementations can

be compared to.

Chapter 4

Case Study

In Chapter 1 we identified the problem statement for this dissertation: we aim to auto-

matically learn behavioural models for accelerators, such that the models can then be

used with existing tooling to discover code that can be mapped to an accelerator. An

ideal use-case for our work in this dissertation is to generalise learned programs to con-

straints that can then be used to discover and map code onto accelerators. While this

process of generalisation is future work (see Chapter 7), learning programs as models

for accelerators is one step towards an end-to-end solution for matching arbitrary code

with arbitrary accelerators. Figure 4.1 shows the structure of an end-to-end solution.

To motivate an end-to-end solution, it is necessary to show that performance can

indeed be improved by using an accelerator for a given problem—we want to know

whether the difficult process of automatically matching code to accelerators is actu-

ally worthwhile. If it is, then learning the behaviour of that accelerator is a useful

end result. As an example problem to be studied in this way, we considered sparse

matrix-vector multiplication. This choice was made for a number of reasons: there

are many different accelerator implementations available, it is a common performance

bottleneck in scientific code, and the code structure in SPMV is similar to many other

linear algebra problems, helping to generalise a program synthesis based solution.

This chapter describes our experimental investigation into the potential perfor-

mance improvements available on sparse linear algebra workloads. We conducted a

survey of publicly available scientific source code, finding that sparse matrix-vector

multiplication is a common idiom in physical simulation code. Using the discovered

code, we construct a set of benchmarks that can be used to evaluate the performance

of an implementation of sparse matrix-vector multiplication. The results from these

benchmarks show speedup of up to 50× compared to a naïve sequential implemen-

23

24 Chapter 4. Case Study

Code Compiler Program

Program

Model

Learner

Benchmark

Results

...A0 AN

Figure 4.1: The compiler can produce multiple equivalent versions of the same

program—for example, here it produces one that makes calls to accelerators, and one

that does not.

tation. However, for some instances, using an accelerator causes performance to de-

crease. To address this problem, we demonstrate a machine learning model that can be

used to accurately select the best implementation available on a platform. The section

highlighted in orange in Figure 4.1 shows the work performed in this chapter in the

context of an end-to-end solution.

In Section 4.1 we discuss the prevalence of SPMV and similar algorithms in real-

world software and how they can be discovered, and in Section 4.2 we give details of

the benchmark suite for SPMV we assembled to evaluate accelerated implementations,

with results given in Section 4.3. Finally, in Section 4.4 we discuss our predictive

model for choosing an appropriate implementation of SPMV at runtime.

4.1 Finding SPMV in Code

Finding instances of source code that implement a particular computation is not easy.

A great deal of source code is never made freely available online, and the code that is

available is often not in a centralised, searchable location. This (at least anecdotally)

4.2. SPMV Benchmark Suite 25

is especially true for research-oriented software from the physical sciences, meaning

that our search for instances of SPMV in real code was a frustratingly manual search.

LLVM-based tooling for idiom search due to Ginsbach and O’Boyle [15] was a use-

ful aid to this process, but the many inconsistencies between build systems and the

prevalence of Fortran code limited its applicability.1

Discussion with colleagues associated with the Wales group2 at the University

of Cambridge suggested that chemical simulation and molecular dynamics software

would be a fruitful subdomain to focus our search on. By manually examining freely

available source code in this field, we were able to find a number of packages that

implemented SPMV operations in their internal routines. Of these, the most common

format used was CSR, with some using CSC, BCSR or other variations. For the pur-

poses of this case study we considered only those using CSR. Then, from the CSR

workloads, we found two that we could easily and reproducibly benchmark against

real data. These came from the Wales group’s energy minimisation application, PATH-

SAMPLE [43, 44].

While the scope of this case study meant that we only identified two easily repro-

ducible benchmarks from real world code, there are many more potential instances

that could be similarly evaluated given more time. Further guidance from experienced

users of identified libraries would give more real-world workloads to run against, and

application to more sparse formats would provide further examples we identified but

was not able to analyse so far.

4.2 SPMV Benchmark Suite

Based on our work identifying SPMV instances in real-world chemical simulation

code, we assembled a benchmark suite comprising five different instances. Each

benchmark is an instance of SPMV discovered in a code base, where the core multipli-

cation code was identified and replaced by calls to a harness that wrapped the different

accelerator implementations we tested. The tool performing the automated search and

replacement of code was developed by Ginsbach et al. [16]. A brief description of each

benchmark is as follows:

Wales-PFold The PATHSAMPLE application, running a workload that simulates in-

teractions between a large group of atoms. This benchmark uses options that
1Fortran code cannot be as easily compiled to LLVM IR as C or C++ code can.
2https://www.ch.cam.ac.uk/group/wales/index

https://www.ch.cam.ac.uk/group/wales/index

26 Chapter 4. Case Study

disable an optional preprocessing step, which causes the SPMV computations to

be a significant bottleneck.

Wales-NGT A different workload for PATHSAMPLE that requires a preprocessing step

to be applied to the system before the core SPMV loop is run, meaning that

SPMV instances are less of a bottleneck here.

Netlib The Netlib benchmarks [11] were developed by to test the performance of sys-

tems performing sparse linear algebra workloads. This particular benchmark is

a Fortran implementation of SPMV.

Netlib-C Similar to the Netlib benchmark, but implemented in C rather than Fortran.

NAS-CG We use the conjugate gradient benchmark from the NAS parallel bench-

mark suite [4]. This benchmark performs SPMV operations to solve an iterative

system.

Each of the five benchmarks described above can be compiled against a shared

library containing the function spmv_harness_ shown in Figure 4.2, then run to produce

a performance result.

1 void spmv_harness_(double *out, double *A, double *in,

2 int *IA, int *JA, int *n_rows);

Figure 4.2: Interface to accelerated SPMV implementations.

4.3 Benchmark Results

This section specifies the platforms and accelerator implementations we used to evalu-

ate SPMV performance on our benchmark suite. We then show the performance results

for these accelerators, which show clearly that significant improvements are available

on SPMV workloads.

4.3.1 Experimental Setup

We compared benchmark performance across four accelerated implementations on two

platforms. The two platforms were:

4.3. Benchmark Results 27

Intel Dual 16-core Intel Xeon E5-2620 processors with an Nvidia Titan X GPU.

AMD Single quad-core AMD A10-7850K processor with an AMD Radeon R7 inte-

grated GPU and an Nvidia Titan X GPU.

On these two platforms, the accelerated implementations used were:

Intel-MKL Optimised mathematical libraries provided by Intel, run on the CPU using

8 hardware threads.

Intel-GPU Written using the cuSPARSE library for sparse linear algebra, and run on

the external GPU.

AMD-integrated Using the clSPARSE library for sparse linear algebra, run on the

integrated GPU.

AMD-GPU Also using clSPARSE, but run on the external GPU.

Additionally, each platform ran the sequential implementation of SPMV shown

in Figure 3.3 as a baseline for performance comparisons. Results were obtained by

running each benchmark, then recording either the time reported by the benchmark

application or the total wall clock execution time as appropriate. Results were recorded

10 times per benchmark.

4.3.2 Results

The results from running our benchmark suite are shown in Figure 4.3. It is clear

that large performance improvements are possible across a variety of benchmarks and

platforms—up to 55× for the NAS-CG benchmark being run on the Intel platform’s

GPU.

However, it is also possible that switching to an accelerated implementation causes

a decrease in performance. We see this on the Wales-PFold benchmark being run on

the Intel platform’s GPU. The problem here is due to more memory transfers being

required between the GPU and the host than in the other benchmarks—on the AMD

platform with the same GPU, the CPU is slower in comparison which compensates for

this effect. Additionally, on the Wales-NGT benchmark the SPMV operations are less

of a bottleneck, and so only modest speedups are observed.

28 Chapter 4. Case Study

Netlib
0

10

20

3.85× 3.75×

9.07×

21.99×

Netlib-C
0

10

20

4.95× 3.65×

9.36×

23.02×

Wales-PFold
0

2

4

0.93×

5.11×

3.22× 3.52×

Wales-NGT
0.0

0.5

1.0
1.01×

1.12× 1.05× 1.07×

NAS-CG
0

20

40

55.58×

7.14×
1.54× 4.94×

Intel-GPU
Intel-MKL
AMD-integrated
AMD-GPU

Figure 4.3: Speedup results for four accelerated implementations of sparse matrix-

vector multiplication. Blue and red bars ran on the Intel and AMD platforms respectively,

and all speedups are quoted relative to a sequential CPU implementation running on

the same platform.

4.4 Predicting Performance

While the results in Figure 4.3 paint a positive picture for SPMV acceleration, the

variance between the sizes of matrices used is small. All the scientific code and bench-

mark suites typically use large problem sizes, but to get a more accurate view of SPMV

performance we require more data points.

To gather this data, we used the University of Florida matrix collection [10]—the

number of non-zero elements in its matrices ranges from one to over 100,000,000.

We developed a synthetic benchmark for this dataset that loads a matrix from a file,

then performs iterated SPMV on it to measure performance. Running this benchmark

over all matrices in the collection shows that not all SPMV problems run faster using

4.4. Predicting Performance 29

an accelerator.3 To alleviate this problem, we developed a predictive model that can

accurately select the best possible SPMV implementation at run-time.

The code in Figure 3.3 is a good approximation for CSR SPMV implementations

found in code. Its running time depends on the number of rows in the matrix, as well as

the number of non-zeros. It is therefore a reasonable starting point to assume that these

values can be used to predict the potential speedup available by using an accelerator.

Additionally, the values are available directly from the arguments passed to the SPMV

interface—no additional computation is required to extract the features.

We trained a linear support vector machine (SVM) model [7] on the sparse matrix

benchmark results, using the number of rows and number of non-zeros as features and

the best implementation label as the output. The result of this training was a model

that when given a pair (rows,nnz) as input, returns an implementation label (either

sequential, integrated GPU or external GPU) corresponding to the predicted best im-

plementation. The model was trained on 2,290 examples, and tested on a disjoint set

of 255 examples, with a test set accuracy of 99.8%.

To evaluate the model, we added a runtime check to our SPMV benchmark im-

plementation that calls the predicted best accelerator after a prediction is made. We

then re-ran the set of benchmarks for the AMD platform with this test enabled—the

metrics we examined for comparison were the number of matrices that experienced a

slowdown (i.e. the implementation chosen is not optimal), the mean speedup over the

whole dataset, and the mean slowdown over instances that were slowed down. Our

results showed noisy results for very small matrices, caused by the execution time of

the model itself. To resolve this effect we added a manual heuristic to the model that

chooses the sequential implementation when there are less than 500 non-zero elements

in the matrix.

The results are shown in Table 4.1. Without using the predictive model, the exter-

nal GPU is always selected as the best implementation. This causes a large proportion

of the benchmark to perform worse than the sequential implementation, with an aver-

age slowdown of 0.165×. Using the predictive model improves on this performance

dramatically—far fewer instances are slowed down, and those that are are slowed down

far less than before. The expected speedup over the whole dataset is also higher. Fi-

nally, we see that the manual heuristic improves performance again, but less dramati-

cally so. The SVM+heuristic model achieves a mean speedup within 1.5% of that of

perfect oracle for the same prediction—while close to 40% of instances are predicted

3Using the AMD platform only due to resource availability issues beyond our control.

30 Chapter 4. Case Study

Model Accuracy Speedup Slowdown

None 34.2% 1.048× 0.165×
SVM 59.8% 1.595× 0.934×

SVM+Heuristic 61.2% 1.619× 0.946×
Oracle 100.0% 1.640× 1.000×

Table 4.1: Performance results for SPMV workloads when using a predictive model

to select the best implementation at runtime. Speedup is calculated over the whole

dataset, and slowdown only over the matrices that exhibited a slowdown. The oracle

results refer to an ideal scenario in which no instances are ever slowed down, and its

results are the ideal limiting values for the other models.

incorrectly, they are slowed down so little that the overall effect is not significant. This

effect is largely because the decision boundary is very noisy.

4.5 Summary

In this chapter we have described a case study examining to what extent accelera-

tors can be used to improve the performance of SPMV workloads. Over a collection

of benchmarks comprising real-world scientific code, well-accepted benchmark suites

and a synthetic benchmark over publicly available datasets, we have shown that accel-

erated implementations of SPMV offer very large performance increases over sequen-

tial implementations. However, these increases do not apply equally to all datasets—to

address this, we developed a predictive model that is able to accurately select the best

accelerator implementation at runtime.

An interesting direction for future work would be to examine other accelerator

implementations—currently, the choices available on each platform are somewhat lim-

ited. Autotuning approaches such as SparseX [12] or POSKI [8] are promising, and

may improve performance for more matrix instances. This would potentially also re-

quire reworking the predictive model to perform better on more classes.

Chapter 5

Implementation

In Chapter 1 we introduced the core problem addressed by this dissertation: in order

to match arbitrary user code to arbitrary accelerators, we need a way of automatically

learning a model of accelerator behaviour. This model can then be consumed by ex-

isting tools to discover and match code to the available accelerators. Additionally,

we proposed the use of program synthesis to solve this problem. Then, Chapter 4

showed an experimental evaluation of the performance available by using linear al-

gebra accelerators—the results from these experiments show promising performance

improvements. Because of this, implementing a program synthesis based tool to auto-

matically learn accelerator behaviour is a useful step towards the end-to-end solution

shown in Figure 1.1.

This chapter discusses the implementation of a framework for performing oracle-

guided program synthesis; it allows for different methods of program synthesis to be

implemented easily by abstracting common details, and we use it to implement a pro-

gram synthesizer for synthesizing looping programs based on user annotations. The

synthesizer (AccSynt) can be used to discover an executable model for an accelera-

tor’s behaviour, with the aim of then being able to discover similar instances in a code

base.

This chapter is laid out as follows: in Section 5.1 we describe the underlying tech-

nical detail in my synthesizer framework. Then, in Section 5.2 we go on to give details

of how we used this framework to build AccSynt, a program synthesizer for automati-

cally learning the behaviour of accelerators.

31

32 Chapter 5. Implementation

5.1 Framework

This section describes the implementation of a framework for developing program

synthesizers that target LLVM intermediate representation. We describe the conceptual

interface that a synthesizer developed in this framework should satisfy, then go on to

provide technical details implemented by the framework that allow for synthesizers to

be developed more easily.

5.1.1 Synthesizer Interface

It is worth examining exactly what is meant by “synthesizer” in the context of this

framework—that is, what end product should a programmer be able to develop by

using it, and what customisation points are available to them to do so? The stated goal

of my project is to develop a synthesizer that can synthesize an executable program that

is behaviourally equivalent to an accelerator—design decisions about the framework

are therefore made with respect to this goal.

For an arbitrary accelerator, if all we know is how to make calls to it (i.e. we do

not know any of its internal implementation details), the only practical way to decide

whether a program is equivalent to it or not is to evaluate both over a large set of

example inputs. If no inputs lead to different outputs, then we can be reasonably

certain that the program is a model for the accelerator.

This means that the developer of a synthesizer does not have to provide a method

of deciding equality between the programs they generate and the accelerator—it can be

automatically implemented by the framework. This leaves the primary customisation

point for the developer as the generation of individual candidate programs. These

candidates can then be compiled and tested automatically by the framework.

To generate a candidate program, the developer implements a construction method

that takes an LLVM IR function as input. This function is then populated with in-

structions by a synthesis algorithm, and can then be checked for correctness by the

framework. A simplified version of this interface is shown in Figure 5.1.

5.1.2 Technical Details

Any implementation of the interface in Figure 5.1 can be used with the synthesis frame-

work to generate programs that are automatically tested for correctness against a large

set of example inputs. The framework handles several implementation details that

5.1. Framework 33

1 struct CustomSynth : Synthesizer {

2 void construct(llvm::Function *F, llvm::IRBuilder<> &B) const override;

3 };

Figure 5.1: C++ interface for a custom synthesis algorithm compatible with my frame-

work.

make the development of synthesizers easier:

LLVM Compilation The framework provides code that treats LLVM functions as if

they were native C++ code. There is a lot of repetitive boilerplate code associ-

ated with JIT compilation and execution of LLVM IR at runtime, and wrapping

functions as C++ callable objects allows for more generic algorithms to be writ-

ten. Additionally, ownership and object copying between the code generation

and execution phases is complex and easy to get wrong.

Error Handling Convention It is possible for synthesized programs to terminate with

an error of some kind. The synthesis framework allows for this by adding an ex-

tra output parameter to every synthesized function that can be set to a particular

value to signal an error. This means that errors can be signalled out-of-band from

actual return values through a simple interface. The LLVM function wrappers

described above handle these errors transparently by throwing an exception if

the error value is set.

The framework also contains an LLVM optimisation pass that removes error-

handling code from synthesized programs—this is useful because the signature

of generated code that handles errors is different to the accelerator’s interface.

Handling errors in this way means that developers can report errors within their

synthesized programs in a standard way using a simple interface. In AccSynt, we

use this mechanism to perform bounds checking for code that accesses memory.

Multithreading Using LLVM’s code generation features in a multi-threaded context

is possible, but difficult to implement properly. The synthesis framework han-

dles multithreaded code generation and compilation appropriately, meaning that

developers can write their synthesis algorithms without explicitly considering

how to parallelise them safely.

Some algorithms might require internal multithreading or parallelism, and to

34 Chapter 5. Implementation

support these cases the framework allows access to the underlying LLVM thread-

ing contexts so that code generation can still be done safely.

Allowing multithreading in this way means that the same synthesizer can be

easily scaled up to run on a multi-core machine without rewriting the code gen-

erator.

Correctness Checks As described above, the use case for this framework is writing

synthesizers that are compared against the behaviour of accelerators for correct-

ness. This means that the primary method of checking their correctness is by

comparing input-output behaviour against a large set of inputs.

The framework handles this checking for synthesizers, which are able to access

the set of examples used for checking correctness (if the examples are relevant

for code generation).

5.1.3 Summary

Writing a program synthesizer entails a great deal of boilerplate code that must be im-

plemented before any actual synthesis can be performed. In this section we have given

a brief overview of some examples of where this boilerplate occurs, and described the

implementation of a framework that abstracts it away. This allows for new program

synthesizers to be written more easily—the only customisation point that needs to be

implemented by a developer is a method that constructs a candidate program.

5.2 AccSynt

In Section 5.1 we described the boilerplate code that we implemented as part of a

framework for developing program synthesizers. This framework offers a single cus-

tomisation point—a method that generates a single candidate program based on the

set of input-output examples. This section describes our implementation of AccSynt, a

program synthesizer that aims to synthesize programs that are behaviourally equivalent

to an accelerator. In particular, it initially targets accelerators that perform linear alge-

bra and nested reduction operations. However, this is largely due to time restrictions

during development—in further work we hope to expand the scope of accelerators

targeted.

5.2. AccSynt 35

The case study in Chapter 4 examines sparse matrix-vector multiplication as a can-

didate for acceleration—it can be found in real-world code in the form of hand-coded

implementations, and significant performance gains are available by choosing an ap-

propriate accelerator to run the multiplications on. We therefore identified matrix-

vector multiplication as an initial running example to work towards—Chapter 6 ad-

dresses this bias and discusses how the range of programs targeted can be improved.

In the remainder of this section we describe how AccSynt synthesizes linear alge-

bra programs, and the assumptions its implementation makes to do so. The two most

important ideas that allow this are adding “human” information to a type signature

in order to better describe program intent, and enumerating possible loop structure

given a set of iterators. We describe these ideas in more detail in Section 5.2.1 and

Section 5.2.2 respectively.

5.2.1 Parameter Annotations

Synthesizers developed using our framework check correctness by comparing two

callable objects with respect to their input-output behaviour—this means that the ac-

celerators targeted should have a C-like function call interface.

1 void operation(double *, int, double *, double *);

Figure 5.2: C type signature for an operation where we do not know the semantics of

any of the arguments.

For the purposes of program synthesis, the type signature alone of an accelerator

interface is a very weak prior on the space of candidate programs—we have no knowl-

edge of the semantics associated with any of the arguments. This means that we cannot

make any assumptions about the structure of synthesised programs, which leads to an

intractably large search space.

However, programmers often know informal information about the arguments to

such a call site—for example, they may know that one parameter serves as an output,

while another represents a size. These facts are often present in documentation, and

can be known even without knowing what the call site’s overall behaviour is. The

code in Figure 5.2 shows a call site without semantic annotations, while Figure 5.3 has

semantic annotations. From these annotations we can restrict the space of possible pro-

grams with this signature—for example, any program that stores to b or c or accesses

36 Chapter 5. Implementation

1 void operation(

2 double * a{output},

3 int s,

4 double * b{size = s},

5 double * c{size = s}

6);

Figure 5.3: C type signature for an operation with semantic annotations on its parame-

ters. The code between braces after each parameter name is a hypothetical syntax for

these annotations—they mark the first parameter as being an output, and the last two

as having size s.

them at indexes greater than s will be incorrect.

For these parameter annotations, it is important to strike a balance between giving

useful information to the synthesizer and being difficult for the programmer to work

out. If they have too much information, then the usefulness of the synthesis process is

decreased. If they have too little, then it may not be possible to perform the synthesis.

AccSynt implements these tags by means of a small “type system” that encodes

both the C types and parameter annotations for a signature. The user of a synthesiser

then supplies a signature in this new type system along with the callable interface to

the accelerator. In Figure 5.4 we give a simplified specification for the tags of interest

to us when synthesizing linear algebra programs—it allows integer and double values,

and pointers to those values. Pointer types can be annotated as being outputs, or as

having a compile- or run-time size specified by a constant value or another argument

respectively.

This system of tagging types can be easily extended to more complex signatures

(for example, structures or variadic functions), but for the purposes of this chapter

the definition given is sufficient. Similarly, any information easily obtainable by the

programmer can and should be included in new tags.

5.2.2 Loops

At the core of any linear algebra routine is an iteration or loop of some kind over the

data in a matrix or vector. In order to learn the behaviour of accelerators that perform

linear algebra workloads, a way of synthesizing looping programs is required. This

is not a commonly studied program synthesis task, and so in Section 2.3 we examine

5.2. AccSynt 37

〈size〉 ::= non-negative constant integer

〈param〉 ::= name of one of the function arguments

〈base-type〉 ::= integer

| double

〈aggregate-type〉 ::= pointer 〈base-type〉

〈sized-type〉 ::= fixed-size 〈size〉 〈aggregate-type〉
| sized 〈param〉 〈aggregate-type〉

〈type〉 ::= 〈base-type〉
| 〈aggregate-type〉
| 〈sized-type〉
| output 〈sized-type〉

Figure 5.4: Specification for tagged type constructors used in annotated type signa-

tures.

similar work to put the techniques from this section into context.

The key idea that underpins our synthesis of loops is that if one of an interface’s

arguments is a pointer whose size is known, it is far more likely than not that the

computation can be expressed as a loop involving the size. This is the first assumption

that AccSynt makes—if there is a data parameter with a known size, it should try

to synthesize a loop over it. An example of what this loop looks like is shown in

Figure 5.5.

1 double func(

2 int x,

3 double* a{size = x}

4);

synthesize

1 double func(int x, double *a)

2 {

3 for(int i = 0; i < x; ++i) {

4 // use a[i]

5 }

6 }

Figure 5.5: Example of how AccSynt synthesizes a loop skeleton from a data parameter

with a known size. For clarity, this listing uses C as the synthesis target rather than

LLVM.

The synthesis process is simple when there is only a single data parameter with a

38 Chapter 5. Implementation

known size—there is only one possible loop over all the data elements. When there

are two or more parameters with known sizes, the process is more complex. There are

multiple different ways in which we can iterate over several objects of a known size—

for example, we could iterate over one then the other, or we could nest the iteration

over one inside the other’s iteration. These two cases are shown in Figure 5.6.

1 double func(

2 int x,

3 int y,

4 double* a{size = x},

5 double* b{size = y}

6);

synthesize

1 double func_1(int x, int y,

2 double *a, double *b)

3 {

4 for(int i = 0; i < x; ++i) { ... }

5 for(int j = 0; j < y; ++j) { ... }

6 }

7

8 double func_2(int x, int y,

9 double *a, double *b)

10 {

11 for(int i = 0; i < x; ++i) {

12 for(int j = 0; j < y; ++j) { ... }

13 }

14 }

Figure 5.6: An example of how AccSynt can synthesize multiple loops over data—either

one after the other or nested.

As well as arranging the structure of the loops differently, the order in which the

objects are iterated over can be varied as well. The approach taken by AccSynt to syn-

thesizing these loops is combinatorial—it enumerates all the possible loop structures,

then synthesizes a candidate with each structure in turn.

Generating potential loop structures is a two-step process. First, the potential

‘shapes’ for loops are generated. For N data objects, this corresponds to generating

the set of all possible lists of n-ary trees with N total nodes in the list. This equivalence

follows from the fact that a loop nest where the iterators are not yet known can be seen

as a tree with unlabelled nodes, and it is possible to have multiple loops in sequence at

the top level. Generating these lists can be done by a simple brute force algorithm as

in practice, the value of N is very small. Figure 5.7 shows the five possible loop shapes

when there are three iterators.

Once we have generated all the unlabeled loop shapes, we can easily enumerate

all the labellings of these shapes with the iterators i1, ..., iN . Each of these labellings

corresponds to a different control flow for the synthesized program—AccSynt stores

5.2. AccSynt 39

Figure 5.7: The five possible loop shapes (in the form of tree sequences) when there are

three iterators. Solid lines indicate loop nesting, while dotted lines indicate sequences

of loops.

all the possible structures, and synthesizes a program with each one in turn.

This loop technique will generate all the possible loops that iterate linearly over

all the elements in each sized data pointer passed to the interface. However, the space

of programs that this permits is somewhat restricted. Some common patterns that it

cannot generate are:

• Multiple arrays of the same size are iterated simultaneously in the same loop.

• The size of pointed-to data is not known, or the information that encodes the size

cannot be expressed using parameter annotations.

• Access to data is a function of the iterator variable (e.g. accessing data at index

i*j + k inside a nested loop).

AccSynt accounts for the first case given above by adding simultaneous loops over

identically-sized data to the set of structures it can generate. The second and third

cases are handled by synthesizing index expressions inside loop bodies, then using

them to index into unsized data. Full details of the methods used to perform loop body

synthesis are given in the next section.

5.2.3 Synthesis

Previously in this section we described how parameter annotations can be used to con-

vey programmer intent better than C types alone can, as well as how knowledge of data

sizes can be used to synthesize the structure of regular loops over that data. Based on

this, we now describe how actual programs can be synthesized using these techniques.

The steps taken by AccSynt to generate a single candidate program which can be com-

piled and tested by the synthesis framework are given below, along with example code

where appropriate:

40 Chapter 5. Implementation

1. Generate boilerplate common to all generated functions. This means construct-

ing a function with the appropriate parameter and return types, along with entry

and exit blocks that set up a return value for the function. The code below shows

a minimal example of this:

1 define i64 @candidate(i64* %err, i64, double*) {

2 entry:

3 %return_loc = alloca i64, align 4

4 store i64 0, i64* %return_loc

5 br label %exit

6 exit:

7 %return = load i64, i64* %return_loc

8 ret i64 %return

9 }

2. Based on the loop structure algorithm above, create the control flow code for the

chosen loops. Every loop has four components: header, exit, and two halves of

its body—if a loop has child loops, they are constructed between the two halves

of its body, which allows setup and teardown code to be synthesized before and

after child loops are run.

The loop induction variable is set up at this point, and at the end of the body it is

compared to the loop upper bound (which is known from parameter annotations).

Abbreviated control flow for a single loop with no children is shown in the code

sample below:

1 define i64 @candidate(i64* %err, i64, double*) {

2 ...

3 header:

4 br label %body

5 body:

6 %iter = phi i64 [0, %header], [%nextit, %body]

7 %nextit = add i64 %iter, 1

8 %cond = icmp eq i64 %nextit, %upper

9 br i1 %cond, label %loop-exit, label %body

10 loop-exit:

11 br label %exit

12 ...

13 }

5.2. AccSynt 41

3. Once the loop structure has been built, the next synthesis step is to load data

from pointers, using indexes based on the loop iterator. In every loop we have a

pointer being iterated over directly, and we load the data at the current index into

this pointer in every loop. Then, for pointers with unknown sizes, we synthesise

a new index and perform a load of that data as well.

AccSynt synthesises new indexes by generating arithmetic combinations of loop

indexes and constant values in the program. For example, in a nest of two loops,

the inner loop would have both the inner and other indices available to combine

with constant values. Addition, subtraction and multiplication of indices with

constants are all supported operations. The code below shows an example of the

loads performed in a loop body:

1 define i64 @candidate(i64* %err, i64, double* %data, double* %otherdata) {

2 ...

3 body:

4 %data_ptr = getelementptr double, double* %data, double %iter

5 %val_0 = load double, double* %data_ptr ; direct load from index

6 %idx = add i64 %iter, %other_iter ; synthesize new index

7 %other_ptr = getelementptr double, double* %other, double %idx

8 %val_1 = load double, double* %other_ptr ; computed index load

9 ...

10 }

4. Loop bodies now perform loads of data at several different indices. However,

because the synthesised program will operate on real memory, bounds checking

is required to ensure memory safety. We do this by checking loads to sized

pointers against their known size, and loads to unsized pointers against a large

fixed size—the synthesis framework ensures that memory passed to synthesized

programs is always valid up to this maximum size.

Bounds checking is performed by adding tests to every computed index to ensure

they do not exceed the maximum valid size for the relevant pointer. If they do, a

branch to an error handling block is made—this block sets the error output and

returns from the function. Shown below is an example of this bounds checking

and error handling.

42 Chapter 5. Implementation

1 define i64 @candidate(i64* %err, i64 %size, double*) {

2 ...

3 body:

4 %err_cond = icmp sgt i64 %iter, %size

5 br i1 %err_cond, label %error_handler, label %body2

6 body2:

7 ...

8 error-handler:

9 store i64 1, i64* %err

10 ret i64 0

11 ...

12 }

5. At this stage, the function is set up to perform control flow but not to actually

compute any results. The next stage is to populate basic blocks with instruc-

tions. We maintain a set of LLVM values that are ‘available’, and generate new

instructions by combining available values. For example, we might generate a

new value by adding two existing ones together. The operations chosen to com-

bine instructions are randomly sampled from a set of possibilities.

The set of available values starts with the values loaded from memory inside

the loop bodies, together with the value of generated loop indices and some

small constant values. Each basic block is then populated with instructions by

combining live values (by adding, multiplying etc.). Values computed in a basic

block are available in its successors, meaning that values can flow from parent

loops into child loops, and out of a child loop into the second body block of its

parent.

Loops are able to track state between iterations by creating phi nodes in their

bodies—these nodes are a construction used in SSA form that allow a variable

to have a different value depending on how control flow reached it. These nodes

are initialised to an available value when the block is populated, then their ‘loop-

ing’ value is selected from the set of instructions that reference the node. This

prevents useless phi nodes from being constructed. The code below shows an

example of generated code:

5.2. AccSynt 43

1 define i64 @candidate(i64* %err, i64 %size, double*) {

2 ...

3 body:

4 %phi1 = phi double [0.0, %entry], [%val1, %body]

5 %val0 = fadd double %load1, %load2

6 %val1 = fadd double %val0, 1.0

7 ...

8 ...

9 }

6. Once the basic blocks have been populated with instructions, the final synthesis

step is to create outputs—this means storing to parameters flagged as outputs, as

well as storing a value to the function return location created at the start of the

synthesis process.

If an output parameter has a size associated with it, stored values are selected

from the available values inside the loop over that parameter’s elements. Simi-

larly, the return value for the function is selected from all the available values in

the final basic block. Example code performing output is shown below:

1 define i64 @candidate(i64* %err, i64, double*) {

2 ...

3 body:

4 %data_ptr = getelementptr double, double* %data, double %iter

5 store double %data0, %data_ptr

6 ...

7 exit:

8 %return = load i64, i64* %return_loc

9 ret i64 %return

10 }

These steps produce a function that can be called identically to the accelerator

interface in question. Once the candidate function has been synthesised, it is passed

back to the synthesis framework to be tested for behavioural equality. If it appears

to be correct, a series of LLVM passes are applied to remove error handling code and

remove redundancy (while still preserving the overall code structure to aid programmer

understanding). This final version is returned to the user as a successful result.

44 Chapter 5. Implementation

5.2.4 Summary

In this section we have described the process by which AccSynt generates candidate

programs during the synthesis process. To do this, it makes use of information in

parameter annotations given by the user to synthesise loop control flow structures that

are likely to yield correct programs. Synthesising control flow explicitly reduces the

synthesis problem to a series of linear ones, which is a more tractable problem. In

Chapter 6 we examine the success of these techniques.

Chapter 6

Evaluation

In Chapter 5 we described the implementation of a framework for easily building

oracle-guided program synthesisers that generate LLVM IR, along with the design

of AccSynt—a program synthesiser that aims to learn the behaviour of accelerators by

synthesising programs that are behaviourally equivalent to them. This chapter evalu-

ates the success of AccSynt with respect to several criteria, and is laid out as follows:

first, in Section 6.1 we examine the expressive capability of AccSynt—that is, how rich

is the space of potential programs it can synthesise? In Section 6.2 we discuss issues

related to the performance of AccSynt, and show how potentially long synthesis times

can be avoided during development.

6.1 Expressivity

No program synthesiser can synthesise every possible program, and so an important

part of their evaluation is to establish the space of programs that can be synthesised.

This section examines the expressivity of AccSynt with respect to its initial target of

linear algebra accelerators. We apply AccSynt to a series of progressively more dif-

ficult problems in linear algebra—scalar sum, vector sum, dot product, dense matrix-

vector multiplication and sparse matrix-vector multiplication. Using these problems as

examples, we identify sources of complexity that AccSynt finds ‘difficult’ as well as

some that are easy for it to learn. Finally, we give a summary of computational patterns

that are not yet supported by AccSynt.

45

46 Chapter 6. Evaluation

6.1.1 Linear Algebra Problems

In this subsection we give example implementations of five progressively more difficult

linear algebra problems, and apply AccSynt to learning them.

Scalar Addition

1 int interface(int x, int y) {

2 return x + y;

3 }

This is perhaps the simplest possible task that AccSynt could be applied to—

AccSynt is able to synthesise it trivially, and no parameter annotations are neces-

sary (or even possible). Addition of two values is one of the primitive operations

supported by the synthesis process, and the number of instructions generated in

each candidate is small because no loops are required.

Vector Addition

1 void interface(int s, double* x, double* y, double* o) {

2 for(int i = 0; i < s; ++i) {

3 o[i] = x[i] + y[i];

4 }

5 }

AccSynt requires several parameter annotations to correctly synthesise this program—

the output vector must be marked as such, as well as selecting s as the size for

all three vectors.

With these annotations in place, AccSynt can easily synthesise this program.

The code generated in the loop body is no more complex than the scalar addition

example given above—because control flow is generated before loop bodies, it

is just as likely to be synthesised as scalar addition.

6.1. Expressivity 47

Dot Product

1 double interface(int s, double *x, double *y) {

2 double dot = 0.0;

3 for(int i = 0; i < s; ++i) {

4 dot += x[i] * y[i];

5 }

6 return dot;

7 }

This example is similar to vector addition, and uses the same parameter anno-

tations. However, it is more complex because it requires state to be tracked

between iterations. AccSynt can generate two distinct but equivalent programs

for this example—one that performs a load and store of the function return value

at each iteration, and one that stores the final value of a phi node after the loop

has finished executing.

Once the synthesiser is able to track state between loop iterations in this way, the

synthesis of the loop body is similar to the previous two examples.

Dense Matrix-Vector Multiplication

1 void interface(int r, int c, double* a, double* x, double* y) {

2 for(int row = 0; row < r; ++row) {

3 double sum = 0.0;

4 for(int col = 0; col < c; ++col) {

5 sum += a[row * c + col] * x[col];

6 }

7 y[row] = sum;

8 }

9 }

Several issues with AccSynt were diagnosed and resolved while trying to syn-

thesise this example—it is more complex in a number of ways than the previous

programs.

The first of these is that the size of the matrix a cannot be given as a parame-

ter annotation. This means that accesses to it happen only through synthesised

indexes, rather than directly in a loop of its own. The index synthesis process de-

scribed in Chapter 5 is able to generate the row-major indexing pattern because

48 Chapter 6. Evaluation

the row and column iterators are both available in the inner loop, and the number

of columns is an available constant.

The second complexity is that the program requires nested loops, with the in-

ner loop tracking state between iterations—no previous example required nested

loops.

However, despite being more complex, the inner loop’s arithmetic operations

are no more complex once the correct values are loaded from memory and made

available to the synthesiser—the core operation is still a multiply-accumulate.

Sparse Matrix-Vector Multiplication

1 void interface(int rows, double* A, int* IA, int* JA,

2 double* x, double* y) {

3 for(int row = 0; row < rows; ++row) {

4 double sum = 0.0;

5 for(int j = IA[row]; j < IA[row+1]; ++j) {

6 sum += a[j] * x[JA[j]];

7 }

8 y[row] = sum;

9 }

10 }

AccSynt as described could not synthesise this example. Its view of loop struc-

ture is not able to express the inner loop—it is not bounded by zero and a fixed

value, but rather by values that depend on the current iteration. While the outer

loop will be constructed easily, the inner loop will never be generated by Acc-

Synt. To resolve this problem, we manually extended AccSynt with a set of

features that would allow it to synthesise sparse matrix-vector multiplication.

These features are:

• A new parameter annotation that is applied to parameters that contain indices—

in the CSR format, the IA and JA arrays both contain indices that can be

used to perform loads or bound loops.

• Indirect loads are performed inside loop bodies for these parameters—that

is, one load is performed to get an index, which is then used to seed an

index generation as described previously.

6.1. Expressivity 49

• A loop between two loaded indices is always synthesised to generate the

inner loop in SPMV.

The modified synthesiser is able to synthesise sparse matrix-vector multiplica-

tion, but because the assumptions it makes are hard-coded into the synthesis

process we have omitted it from the benchmarks and evaluation in this chapter.

However, it serves as a useful proxy to demonstrate the potential expressivity of

a more general synthesis process. As well as this, it closes the gap more neatly

with the case study from Chapter 4—by learning a model for SPMV accelera-

tion, the only step left in an end-to-end solution is to generalise from learned

programs to constraint descriptions.

A general pattern that emerges from examining these examples is that the synthesis

of loop control flow separately to loop bodies means that computations over scalar val-

ues can be efficiently lifted into loops. However, complex scalar operations increase

the difficulty of synthesis for AccSynt dramatically—deeply nested arithmetic expres-

sions are hard for it to synthesise, but nesting them inside a loop does not make them

much harder.

It is worth noting that the expressivity of AccSynt does currently rely on parame-

ter annotations from the programmer in order to guess loop structures. However, the

amount of information given to the synthesiser is small and easy to provide based on

documentation.

6.1.2 Unsupported Patterns

It is clear from examining the synthesis of dense and sparse matrix-vector multipli-

cation that AccSynt’s model of control flow is not adequate to express certain useful

programs. In the case of sparse matrix-vector multiplication, the inner loop depends

on values computed in its parent. There are other obvious examples of where Acc-

Synt’s control flow model is not adequate. For example, any computation that requires

a conditional statement cannot be synthesized, or indeed any form of loop that is not a

“for loop” in the form currently supported by AccSynt.

This suggests that a more general synthesis process would be a useful modification

for AccSynt. Instead of hard-coding the ability to synthesize certain types of loop into

AccSynt, it could sample from a library of control flow structures. This more flexible

method would still be compatible with the current system of parameter annotations—

instead of always generating nested loops, observing a sized parameter would bias the

50 Chapter 6. Evaluation

component sampling towards those components (while still allowing other ones to be

generated for flexibility).

6.2 Performance

Previously, we examined the expressive capability of AccSynt with respect to linear

algebra problems of varying complexity. In this section we evaluate its performance

on these problems—in particular, the time required to synthesise each example, and

how this increases with the complexity of the program. As well as this, we discuss the

use of stochastic synthesis methods and how they affect performance.

6.2.1 Synthesis Time

The time taken for AccSynt to successfully synthesise a program is an important metric

for its usefulness. If it takes too long to learn an example successfully, then it cannot

be applied easily during a development process. We created a number of example pro-

grams similar to the ones described previously. These examples perform computations

involving scalar and vector arithmetic, with varying arithmetic expression depth.

Synthesis times for these problems are shown in Table 6.1. From these results we

can see that increasing the number of loops required for a program does not dramat-

ically increase the time taken to reach a solution. However, increasing the arithmetic

complexity of the program and requiring synthesised indexes to access data both cause

large increases in the synthesis time. This observation validates our observations from

the previous section when examining the expressivity of AccSynt.

For all the benchmark results in Table 6.1, the variance in synthesis times is very

high. This is because random sampling of instructions and loop structure is at the core

of the synthesis process, meaning that accurately predicting synthesis performance is

difficult.

The time taken to synthesise these programs is consistent with the use of AccSynt

as an infrequently run tool—once a model for accelerator behaviour is discovered, it

can then be reused. However, the use of stochastic methods makes it difficult to predict

how long AccSynt will take to reach a solution.

6.2. Performance 51

Example Loops Expression Depth Mean Synthesis Time (s)

identity — 0 0.013±0.011

addition — 1 0.021±0.013

2d-dot — 3 4.20±2.46

vector-copy 1 0 0.016±0.002

vector-add 1 1 0.023±0.006

dot-product 1 2 0.800±0.478

nested 2 2 0.309±0.158

gemv 2 3 + indexing 110±52.2

gemv-bias 2 4 + indexing 323±94.7

spmv 2 3 224±38.3

Table 6.1: Time taken for AccSynt to synthesise a number of example programs. All

synthesis was performed using 3 hardware threads for program generation, on an Intel

i5-6500 CPU with 16GB of RAM. Statistics are given over 5 runs of each benchmark.

Note that the results for the spmv benchmark are reported using the modifed synthesis

method specific to SPMV synthesis.

6.2.2 Stochastic Methods

The use of stochastic methods and random sampling for program synthesis is common

(we give a review of related techniques in Section 2.2). AccSynt achieves acceptable

performance results by using a simple random sampling method to generate linear

blocks of code. However, the performance and predictability of this technique require

improvement so that more diverse programs with complex control flow structure can

be synthesised.

When randomly sampling instructions to populate functions, AccSynt does not

bias its search at all during or between iterations. This allowed the synthesiser to be

developed easily, but means that all programs are generated with equal probability at

each synthesis step. We propose two ways in which the search could be weighted

towards generating correct programs:

Domain Similarity One potentially useful prior we can establish on generated pro-

grams is the problem domain their accelerator relates to. Given this domain

information, a model could be built to describe the probability distribution of

control flow or instructions in that domain.

52 Chapter 6. Evaluation

This information is similar to that provided by parameter annotations, in that it

is easily provided by the programmer without detailed knowledge of the accel-

erator’s behaviour.

Building a model for the distribution of instructions or program structure would

require a suitably large corpus of labelled programs that could be compiled and

analysed.

Feedback Direction Currently, AccSynt only makes use of binary feedback for each

candidate program (that is, whether it passes or fails). Making use of more

detailed feedback such as a similarity metric on input-output example would

allow for it to bias future programs to be more similar to partial successes already

observed.

6.3 Summary

On its initial target of linear algebra workloads and accelerators, AccSynt is able to

express useful programs as complex as dense matrix-vector multiplication, with syn-

thesis times short enough on average to ensure practical application. However, sparse

matrix-vector multiplication cannot yet be expressed by AccSynt. To overcome this

limitation, we propose a more general approach to synthesising control flow struc-

tures. Within this more general approach, it would be possible to express the difficult

inner loop from SPMV. Future work on AccSynt will focus on closing the gap be-

tween learned models and discovering potential sources of acceleration, as well as on

applying program synthesis techniques to more diverse accelerators.

Chapter 7

Conclusion

This dissertation has described the motivation, design and implementation of AccSynt,

a program synthesiser that aims to learn executable models for the behaviour of ac-

celerators. As a first area of application for AccSynt, we conducted an investigation

into the available performance improvements on sparse linear algebra workloads. The

results of this investigation showed that significant performance gains are possible by

using multiple different accelerators, and that a machine learning model can be used to

select the best possible version with high accuracy.

AccSynt’s implementation includes a number of novel ideas in program synthesis—

for example, annotating parameters with human information to influence control flow

synthesis, and combinatorially enumerating loop control flow structures to find the cor-

rect solution to a synthesis problem. We evaluated AccSynt’s ability to synthesise a

series of increasingly complex linear algebra workloads, demonstrating that it is able

to synthesise programs with complex nested loops, such as dense matrix-vector multi-

plication. This synthesis can be achieved in a short enough time that AccSynt can be

practically used as a development tool.

The limiting factor for AccSynt’s ability to synthesise programs is the range of con-

trol flow it can generate—currently, it special-cases a particular form of loop structure.

This restriction prevented it from synthesising sparse linear algebra, but we propose a

method by which this restriction can be lifted. Additionally, we implemented a hard-

coded modification of AccSynt that is able to synthesise sparse linear algebra; this

modification demonstrates the potential of future versions of AccSynt.

By learning a model for the behaviour of an accelerator, we can close the gap be-

tween user code and arbitrary future accelerators while minimising future programmer

effort. AccSynt provides a prototype implementation for this technique that shows how

53

54 Chapter 7. Conclusion

more general solutions can be developed in the future.

7.1 Future Work

Future work on AccSynt will focus on three primary areas. First, we will aim to im-

prove the expressivity of the synthesis process by implementing a component-based

method for generating control flow based on parameter annotations from the user. The

work we describe that extends the synthesiser to sparse matrix-vector multiplication

can be seen as a first prototype of this generalisation. Then, we aim to evaluate it

against more diverse accelerator devices to validate the program synthesis methodol-

ogy in different contexts. Finally, the most important piece of future work is to close

the gap in the toolchain by generalising code to constraints that can then be searched

for using existing tools.

7.1.1 Control Flow and Components

The approach currently taken by AccSynt is to special-case the ability to generate a

specific form of loop when it is aware of data with a known size. This works well

for computation with a fixed, regular iteration pattern—for example, dense matrix-

vector multiplication. However, attempting to apply this pattern to sparse matrix-vector

multiplication revealed that it is not a general enough approach. Many control-flow

patterns are not expressible using these loops.

However, the idea of synthesising control flow separately to computation is a useful

one. To preserve this idea, we propose that future iterations of AccSynt make use of a

library of control flow components rather than hard-coding one particular idiom. These

components would fit well with improvements to the way in which incorrect results are

analysed by AccSynt—for example, conditional control flow could be generated if a

very small number of results in an output vector are incorrect, or different loop bounds

generated if a range of results are incorrect. Doing this means that basic block bodies

can still be generated separately to control flow as is the case with AccSynt currently.

Being able to easily add new control flow structures to the synthesis algorithm

is important for future development, and so it may be prudent to develop a DSL or

library for expressing these components—AccSynt itself is then only responsible for

instantiating these in a generic way.

7.1. Future Work 55

7.1.2 Code Search

AccSynt’s primary goal is not to develop novel program synthesis techniques, but

rather to facilitate the understanding of diverse accelerators so that they can be used

more widely in programs. Currently, the model AccSynt learns for an accelerator is an

LLVM IR program—this can be understood by programmers and used as a reference

to manually discover similar instances. However, it is not easy to search automatically

for similar code given a program.

Work from Ginsbach and O’Boyle [15] deals with discovering instances of com-

putational idioms in source code, given a constraint-based description of the idiom as

input. However, the problem of inducing descriptive constraints based on an exam-

ple does not have an obvious solution—many different programs with varied structure

may all be required to map to the same constraints.

Despite the difficulty of this problem, it is perhaps the most important future di-

rection for work related to AccSynt. If constraint descriptions can be generated from

example programs, code suitable for any accelerator we can learn using program syn-

thesis can be discovered automatically.

7.1.3 Generalising AccSynt

This dissertation has dealt primarily with linear algebra as a working example for pro-

gram synthesis applied to learning accelerator behaviour. However, as we discussed in

Section 2.1, there are an increasing number of accelerators available in a huge number

of problem domains. For AccSynt to be a truly useful tool, it should be able to learn

accelerator behaviour in a more general way.

Expressing more general control flow as described previously is one technique that

will allow AccSynt to target more diverse accelerators, assuming that enough compo-

nents and heuristics are developed. Another direction to investigate in the future is

interfaces that do not fit neatly into the C type signature model currently used—for ex-

ample, accelerators that use memory mapped IO to communicate with the host. New

program heuristics and annotations will be necessary to integrate these interfaces with

program synthesis techniques.

A potential next step for AccSynt in this direction is to select several diverse accel-

erators and perform a detailed analysis of how AccSynt could synthesise programs to

match them, and what assumptions from linear algebra must be relaxed to do so.

Bibliography

[1] R. Alur et al. “Syntax-Guided Synthesis”. In: 2013 Formal Methods in Computer-

Aided Design. Oct. 2013, pp. 1–8. DOI: 10.1109/FMCAD.2013.6679385.

[2] C. Baaij. “CλasH : From Haskell to Hardware”. Info:Eu-Repo/Semantics/masterThesis.

Dec. 2009. URL: http://essay.utwente.nl/59482/ (visited on 10/12/2017).

[3] J. Bachrach et al. “Chisel: Constructing Hardware in a Scala Embedded Lan-

guage”. In: DAC Design Automation Conference 2012. June 2012, pp. 1212–

1221. DOI: 10.1145/2228360.2228584.

[4] D. H. Bailey et al. “The NAS Parallel Benchmarks—Summary and Prelimi-

nary Results”. In: Proceedings of the 1991 ACM/IEEE Conference on Super-

computing. Supercomputing ’91. New York, NY, USA: ACM, 1991, pp. 158–

165. ISBN: 978-0-89791-459-8. DOI: 10.1145/125826.125925. URL: http:

//doi.acm.org/10.1145/125826.125925 (visited on 07/06/2018).

[5] Osbert Bastani et al. “Synthesizing Program Input Grammars”. In: Proceedings

of the 38th ACM SIGPLAN Conference on Programming Language Design and

Implementation. PLDI 2017. New York, NY, USA: ACM, 2017, pp. 95–110.

ISBN: 978-1-4503-4988-8. DOI: 10.1145/3062341.3062349. URL: http:

//doi.acm.org/10.1145/3062341.3062349 (visited on 09/18/2017).

[6] L. S. Blackford, Roldan Pozo, and Et Al. “An Updated Set of Basic Linear Alge-

bra Subprograms (BLAS)”. en. In: Acm Transactions on Mathematical Software

2 (June 2002). URL: https://www.nist.gov/publications/updated-set-

basic-linear-algebra-subprograms-blas (visited on 07/23/2018).

[7] Bernhard E. Boser, Isabelle M. Guyon, and Vladimir N. Vapnik. “A Training

Algorithm for Optimal Margin Classifiers”. In: Proceedings of the Fifth Annual

Workshop on Computational Learning Theory. COLT ’92. New York, NY, USA:

ACM, 1992, pp. 144–152. ISBN: 978-0-89791-497-0. DOI: 10.1145/130385.

130401. URL: http://doi.acm.org/10.1145/130385.130401.

57

https://doi.org/10.1109/FMCAD.2013.6679385
http://essay.utwente.nl/59482/
https://doi.org/10.1145/2228360.2228584
https://doi.org/10.1145/125826.125925
http://doi.acm.org/10.1145/125826.125925
http://doi.acm.org/10.1145/125826.125925
https://doi.org/10.1145/3062341.3062349
http://doi.acm.org/10.1145/3062341.3062349
http://doi.acm.org/10.1145/3062341.3062349
https://www.nist.gov/publications/updated-set-basic-linear-algebra-subprograms-blas
https://www.nist.gov/publications/updated-set-basic-linear-algebra-subprograms-blas
https://doi.org/10.1145/130385.130401
https://doi.org/10.1145/130385.130401
http://doi.acm.org/10.1145/130385.130401

58 BIBLIOGRAPHY

[8] Jong-Ho Byun et al. Autotuning Sparse Matrix-Vector Multiplication for Multi-

core. Tech. rep. UCB/EECS-2012-215. EECS Department, University of Cali-

fornia, Berkeley, Nov. 2012. URL: http://www2.eecs.berkeley.edu/Pubs/

TechRpts/2012/EECS-2012-215.html.

[9] Yajing Chen et al. “A Programmable Galois Field Processor for the Internet

of Things”. In: Proceedings of the 44th Annual International Symposium on

Computer Architecture. ISCA ’17. New York, NY, USA: ACM, 2017, pp. 55–

68. ISBN: 978-1-4503-4892-8. DOI: 10.1145/3079856.3080227. URL: http:

//doi.acm.org/10.1145/3079856.3080227 (visited on 11/27/2017).

[10] Timothy A. Davis and Yifan Hu. “The University of Florida Sparse Matrix Col-

lection”. In: ACM Trans. Math. Softw. 38.1 (Dec. 2011), 1:1–1:25. ISSN: 0098-

3500. DOI: 10.1145/2049662.2049663. URL: http://doi.acm.org/10.

1145/2049662.2049663 (visited on 07/06/2018).

[11] Jack Dongarra, Victor Eijkhout, and Henk van der Vorst. “An Iterative Solver

Benchmark”. In: Sci. Program. 9.4 (Dec. 2001), pp. 223–231. ISSN: 1058-9244.

DOI: 10.1155/2001/527931. URL: https://doi.org/10.1155/2001/

527931 (visited on 07/06/2018).

[12] Athena Elafrou et al. “SparseX: A Library for High-Performance Sparse Matrix-

Vector Multiplication on Multicore Platforms”. In: ACM Trans. Math. Softw.

44.3 (Jan. 2018), 26:1–26:32. ISSN: 0098-3500. DOI: 10.1145/3134442. URL:

http://doi.acm.org/10.1145/3134442 (visited on 06/05/2018).

[13] Joyce Friedman. “Review: Alonzo Church, Application of Recursive Arithmetic

to the Problem of Circuit Synthesis”. In: J. Symbolic Logic 28.4 (Dec. 1963),

pp. 289–290. URL: https : / / projecteuclid . org : 443 / euclid . jsl /

1183734749.

[14] Matteo Frigo and Steven G. Johnson. “The Design and Implementation of FFTW3”.

In: Proceedings of the Ieee. 2005, pp. 216–231.

[15] Philip Ginsbach and Michael F. P. O’Boyle. “Discovery and Exploitation of

General Reductions: A Constraint Based Approach”. In: Proceedings of the

2017 International Symposium on Code Generation and Optimization. CGO

’17. Piscataway, NJ, USA: IEEE Press, 2017, pp. 269–280. ISBN: 978-1-5090-

4931-8. URL: http://dl.acm.org/citation.cfm?id=3049832.3049862

(visited on 09/18/2017).

http://www2.eecs.berkeley.edu/Pubs/TechRpts/2012/EECS-2012-215.html
http://www2.eecs.berkeley.edu/Pubs/TechRpts/2012/EECS-2012-215.html
https://doi.org/10.1145/3079856.3080227
http://doi.acm.org/10.1145/3079856.3080227
http://doi.acm.org/10.1145/3079856.3080227
https://doi.org/10.1145/2049662.2049663
http://doi.acm.org/10.1145/2049662.2049663
http://doi.acm.org/10.1145/2049662.2049663
https://doi.org/10.1155/2001/527931
https://doi.org/10.1155/2001/527931
https://doi.org/10.1155/2001/527931
https://doi.org/10.1145/3134442
http://doi.acm.org/10.1145/3134442
https://projecteuclid.org:443/euclid.jsl/1183734749
https://projecteuclid.org:443/euclid.jsl/1183734749
http://dl.acm.org/citation.cfm?id=3049832.3049862

BIBLIOGRAPHY 59

[16] Philip Ginsbach et al. “Automatic Matching of Legacy Code to Heterogeneous

APIs: An Idiomatic Approach”. In: Proceedings of the Twenty-Third Interna-

tional Conference on Architectural Support for Programming Languages and

Operating Systems. ASPLOS ’18. New York, NY, USA: ACM, 2018, pp. 139–

153. ISBN: 978-1-4503-4911-6. DOI: 10.1145/3173162.3173182. URL: http:

//doi.acm.org/10.1145/3173162.3173182 (visited on 05/17/2018).

[17] Patrice Godefroid and Ankur Taly. “Automated Synthesis of Symbolic Instruc-

tion Encodings from I/O Samples”. In: Proceedings of the 33rd ACM SIGPLAN

Conference on Programming Language Design and Implementation. PLDI ’12.

New York, NY, USA: ACM, 2012, pp. 441–452. ISBN: 978-1-4503-1205-9.

DOI: 10.1145/2254064.2254116. URL: http://doi.acm.org/10.1145/

2254064.2254116 (visited on 10/17/2017).

[18] Sumit Gulwani. “Automating String Processing in Spreadsheets Using Input-

Output Examples”. In: Proceedings of the 38th Annual ACM SIGPLAN-SIGACT

Symposium on Principles of Programming Languages. POPL ’11. New York,

NY, USA: ACM, 2011, pp. 317–330. ISBN: 978-1-4503-0490-0. DOI: 10.1145/

1926385.1926423. URL: http://doi.acm.org/10.1145/1926385.1926423

(visited on 10/10/2017).

[19] Sumit Gulwani, Alex Polozov, and Rishabh Singh. Program Synthesis. Vol. 4.

NOW, Aug. 2017. URL: https://www.microsoft.com/en-us/research/

publication/program-synthesis/.

[20] Bastian Hagedorn et al. “High Performance Stencil Code Generation with Lift”.

In: Proceedings of the 2018 International Symposium on Code Generation and

Optimization. CGO 2018. New York, NY, USA: ACM, 2018, pp. 100–112.

ISBN: 978-1-4503-5617-6. DOI: 10.1145/3168824. URL: http://doi.acm.

org/10.1145/3168824 (visited on 07/02/2018).

[21] Niranjan Hasabnis and R. Sekar. “Extracting Instruction Semantics via Sym-

bolic Execution of Code Generators”. In: Proceedings of the 2016 24th ACM

SIGSOFT International Symposium on Foundations of Software Engineering.

FSE 2016. New York, NY, USA: ACM, 2016, pp. 301–313. ISBN: 978-1-4503-

4218-6. DOI: 10.1145/2950290.2950335. URL: http://doi.acm.org/10.

1145/2950290.2950335 (visited on 10/03/2017).

https://doi.org/10.1145/3173162.3173182
http://doi.acm.org/10.1145/3173162.3173182
http://doi.acm.org/10.1145/3173162.3173182
https://doi.org/10.1145/2254064.2254116
http://doi.acm.org/10.1145/2254064.2254116
http://doi.acm.org/10.1145/2254064.2254116
https://doi.org/10.1145/1926385.1926423
https://doi.org/10.1145/1926385.1926423
http://doi.acm.org/10.1145/1926385.1926423
https://www.microsoft.com/en-us/research/publication/program-synthesis/
https://www.microsoft.com/en-us/research/publication/program-synthesis/
https://doi.org/10.1145/3168824
http://doi.acm.org/10.1145/3168824
http://doi.acm.org/10.1145/3168824
https://doi.org/10.1145/2950290.2950335
http://doi.acm.org/10.1145/2950290.2950335
http://doi.acm.org/10.1145/2950290.2950335

60 BIBLIOGRAPHY

[22] Niranjan Hasabnis and R. Sekar. “Lifting Assembly to Intermediate Repre-

sentation: A Novel Approach Leveraging Compilers”. In: Proceedings of the

Twenty-First International Conference on Architectural Support for Program-

ming Languages and Operating Systems. ASPLOS ’16. New York, NY, USA:

ACM, 2016, pp. 311–324. ISBN: 978-1-4503-4091-5. DOI: 10.1145/2872362.

2872380. URL: http://doi.acm.org/10.1145/2872362.2872380 (visited

on 10/02/2017).

[23] Stefan Heule et al. “Stratified Synthesis: Automatically Learning the X86-64

Instruction Set”. In: Proceedings of the 37th ACM SIGPLAN Conference on

Programming Language Design and Implementation. PLDI ’16. New York, NY,

USA: ACM, 2016, pp. 237–250. ISBN: 978-1-4503-4261-2. DOI: 10.1145/

2908080.2908121. URL: http://doi.acm.org/10.1145/2908080.2908121

(visited on 10/16/2017).

[24] Intel Math Kernel Library. Reference Manual. Intel Corporation, 2009. ISBN:

630813-054US.

[25] Susmit Jha and Sanjit A. Seshia. “A Theory of Formal Synthesis via Inductive

Learning”. In: arXiv:1505.03953 [cs] (May 2015). arXiv: 1505.03953 [cs].

URL: http://arxiv.org/abs/1505.03953 (visited on 11/07/2017).

[26] Susmit Jha et al. “Oracle-Guided Component-Based Program Synthesis”. In:

Proceedings of the 32Nd ACM/IEEE International Conference on Software En-

gineering - Volume 1. ICSE ’10. New York, NY, USA: ACM, 2010, pp. 215–

224. ISBN: 978-1-60558-719-6. DOI: 10.1145/1806799.1806833. URL: http:

//doi.acm.org/10.1145/1806799.1806833 (visited on 11/07/2017).

[27] Norman P. Jouppi et al. “In-Datacenter Performance Analysis of a Tensor Pro-

cessing Unit”. In: Proceedings of the 44th Annual International Symposium on

Computer Architecture. ISCA ’17. New York, NY, USA: ACM, 2017, pp. 1–

12. ISBN: 978-1-4503-4892-8. DOI: 10.1145/3079856.3080246. URL: http:

//doi.acm.org/10.1145/3079856.3080246 (visited on 11/27/2017).

[28] Chris Lattner. “LLVM: An Infrastructure for Multi-Stage Optimization”. PhD

thesis. Computer Science Dept., University of Illinois at Urbana-Champaign,

2002. URL: http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.

1.1.10.331 (visited on 04/06/2017).

https://doi.org/10.1145/2872362.2872380
https://doi.org/10.1145/2872362.2872380
http://doi.acm.org/10.1145/2872362.2872380
https://doi.org/10.1145/2908080.2908121
https://doi.org/10.1145/2908080.2908121
http://doi.acm.org/10.1145/2908080.2908121
http://arxiv.org/abs/1505.03953
http://arxiv.org/abs/1505.03953
https://doi.org/10.1145/1806799.1806833
http://doi.acm.org/10.1145/1806799.1806833
http://doi.acm.org/10.1145/1806799.1806833
https://doi.org/10.1145/3079856.3080246
http://doi.acm.org/10.1145/3079856.3080246
http://doi.acm.org/10.1145/3079856.3080246
http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.10.331
http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.10.331

BIBLIOGRAPHY 61

[29] Alan Leung, John Sarracino, and Sorin Lerner. “Interactive Parser Synthesis by

Example”. In: Proceedings of the 36th ACM SIGPLAN Conference on Program-

ming Language Design and Implementation. PLDI ’15. New York, NY, USA:

ACM, 2015, pp. 565–574. ISBN: 978-1-4503-3468-6. DOI: 10.1145/2737924.

2738002. URL: http://doi.acm.org/10.1145/2737924.2738002 (visited

on 10/10/2017).

[30] Junghee Lim and Thomas Reps. “TSL: A System for Generating Abstract In-

terpreters and Its Application to Machine-Code Analysis”. In: ACM Trans. Pro-

gram. Lang. Syst. 35.1 (Apr. 2013), 4:1–4:59. ISSN: 0164-0925. DOI: 10.1145/

2450136.2450139. URL: http://doi.acm.org/10.1145/2450136.2450139

(visited on 10/12/2017).

[31] Nuno P. Lopes et al. “Provably Correct Peephole Optimizations with Alive”.

In: Proceedings of the 36th ACM SIGPLAN Conference on Programming Lan-

guage Design and Implementation. PLDI ’15. New York, NY, USA: ACM,

2015, pp. 22–32. ISBN: 978-1-4503-3468-6. DOI: 10.1145/2737924.2737965.

URL: http : / / doi . acm . org / 10 . 1145 / 2737924 . 2737965 (visited on

07/23/2018).

[32] David Menendez and Santosh Nagarakatte. “Alive-Infer: Data-Driven Precon-

dition Inference for Peephole Optimizations in LLVM”. In: Proceedings of the

38th ACM SIGPLAN Conference on Programming Language Design and Im-

plementation. PLDI 2017. New York, NY, USA: ACM, 2017, pp. 49–63. ISBN:

978-1-4503-4988-8. DOI: 10.1145/3062341.3062372. URL: http://doi.

acm.org/10.1145/3062341.3062372 (visited on 09/18/2017).

[33] Ravi Teja Mullapudi, Vinay Vasista, and Uday Bondhugula. “PolyMage: Au-

tomatic Optimization for Image Processing Pipelines”. In: Proceedings of the

Twentieth International Conference on Architectural Support for Programming

Languages and Operating Systems. ASPLOS ’15. New York, NY, USA: ACM,

2015, pp. 429–443. ISBN: 978-1-4503-2835-7. DOI: 10.1145/2694344.2694364.

URL: http : / / doi . acm . org / 10 . 1145 / 2694344 . 2694364 (visited on

07/02/2018).

[34] Peter-Michael Osera and Steve Zdancewic. “Type-and-Example-Directed Pro-

gram Synthesis”. In: Proceedings of the 36th ACM SIGPLAN Conference on

Programming Language Design and Implementation. PLDI ’15. New York, NY,

USA: ACM, 2015, pp. 619–630. ISBN: 978-1-4503-3468-6. DOI: 10.1145/

https://doi.org/10.1145/2737924.2738002
https://doi.org/10.1145/2737924.2738002
http://doi.acm.org/10.1145/2737924.2738002
https://doi.org/10.1145/2450136.2450139
https://doi.org/10.1145/2450136.2450139
http://doi.acm.org/10.1145/2450136.2450139
https://doi.org/10.1145/2737924.2737965
http://doi.acm.org/10.1145/2737924.2737965
https://doi.org/10.1145/3062341.3062372
http://doi.acm.org/10.1145/3062341.3062372
http://doi.acm.org/10.1145/3062341.3062372
https://doi.org/10.1145/2694344.2694364
http://doi.acm.org/10.1145/2694344.2694364
https://doi.org/10.1145/2737924.2738007

62 BIBLIOGRAPHY

2737924.2738007. URL: http://doi.acm.org/10.1145/2737924.2738007

(visited on 10/10/2017).

[35] Angshuman Parashar et al. “SCNN: An Accelerator for Compressed-Sparse

Convolutional Neural Networks”. In: Proceedings of the 44th Annual Interna-

tional Symposium on Computer Architecture. ISCA ’17. New York, NY, USA:

ACM, 2017, pp. 27–40. ISBN: 978-1-4503-4892-8. DOI: 10.1145/3079856.

3080254. URL: http://doi.acm.org/10.1145/3079856.3080254 (visited

on 09/18/2017).

[36] Phitchaya Mangpo Phothilimthana et al. “Scaling Up Superoptimization”. In:

Proceedings of the Twenty-First International Conference on Architectural Sup-

port for Programming Languages and Operating Systems. ASPLOS ’16. New

York, NY, USA: ACM, 2016, pp. 297–310. ISBN: 978-1-4503-4091-5. DOI: 10.

1145/2872362.2872387. URL: http://doi.acm.org/10.1145/2872362.

2872387 (visited on 10/02/2017).

[37] Jonathan Ragan-Kelley et al. “Halide: A Language and Compiler for Optimiz-

ing Parallelism, Locality, and Recomputation in Image Processing Pipelines”.

In: Proceedings of the 34th ACM SIGPLAN Conference on Programming Lan-

guage Design and Implementation. PLDI ’13. New York, NY, USA: ACM,

2013, pp. 519–530. ISBN: 978-1-4503-2014-6. DOI: 10.1145/2491956.2462176.

URL: http : / / doi . acm . org / 10 . 1145 / 2491956 . 2462176 (visited on

06/05/2018).

[38] Eric Schkufza, Rahul Sharma, and Alex Aiken. “Stochastic Superoptimization”.

In: Proceedings of the Eighteenth International Conference on Architectural

Support for Programming Languages and Operating Systems. ASPLOS ’13.

New York, NY, USA: ACM, 2013, pp. 305–316. ISBN: 978-1-4503-1870-9.

DOI: 10.1145/2451116.2451150. URL: http://doi.acm.org/10.1145/

2451116.2451150 (visited on 10/17/2017).

[39] Armando Solar-Lezama. “The Sketching Approach to Program Synthesis”. en.

In: Programming Languages and Systems. Lecture Notes in Computer Science.

Springer, Berlin, Heidelberg, Dec. 2009, pp. 4–13. DOI: 10.1007/978-3-642-

10672-9_3. URL: https://link.springer.com/chapter/10.1007/978-

3-642-10672-9_3 (visited on 07/04/2018).

https://doi.org/10.1145/2737924.2738007
https://doi.org/10.1145/2737924.2738007
http://doi.acm.org/10.1145/2737924.2738007
https://doi.org/10.1145/3079856.3080254
https://doi.org/10.1145/3079856.3080254
http://doi.acm.org/10.1145/3079856.3080254
https://doi.org/10.1145/2872362.2872387
https://doi.org/10.1145/2872362.2872387
http://doi.acm.org/10.1145/2872362.2872387
http://doi.acm.org/10.1145/2872362.2872387
https://doi.org/10.1145/2491956.2462176
http://doi.acm.org/10.1145/2491956.2462176
https://doi.org/10.1145/2451116.2451150
http://doi.acm.org/10.1145/2451116.2451150
http://doi.acm.org/10.1145/2451116.2451150
https://doi.org/10.1007/978-3-642-10672-9_3
https://doi.org/10.1007/978-3-642-10672-9_3
https://link.springer.com/chapter/10.1007/978-3-642-10672-9_3
https://link.springer.com/chapter/10.1007/978-3-642-10672-9_3

BIBLIOGRAPHY 63

[40] Daniele G. Spampinato and Markus Püschel. “A Basic Linear Algebra Com-

piler”. In: Proceedings of Annual IEEE/ACM International Symposium on Code

Generation and Optimization. CGO ’14. New York, NY, USA: ACM, 2014,

23:23–23:32. ISBN: 978-1-4503-2670-4. DOI: 10.1145/2544137.2544155.

URL: http : / / doi . acm . org / 10 . 1145 / 2544137 . 2544155 (visited on

07/23/2018).

[41] Venkatesh Srinivasan and Thomas Reps. “Synthesis of Machine Code from Se-

mantics”. In: Proceedings of the 36th ACM SIGPLAN Conference on Program-

ming Language Design and Implementation. PLDI ’15. New York, NY, USA:

ACM, 2015, pp. 596–607. ISBN: 978-1-4503-3468-6. DOI: 10.1145/2737924.

2737960. URL: http://doi.acm.org/10.1145/2737924.2737960 (visited

on 10/10/2017).

[42] Michel Steuwer et al. “Generating Performance Portable Code Using Rewrite

Rules: From High-Level Functional Expressions to High-Performance OpenCL

Code”. In: Proceedings of the 20th ACM SIGPLAN International Conference

on Functional Programming. ICFP 2015. New York, NY, USA: ACM, 2015,

pp. 205–217. ISBN: 978-1-4503-3669-7. DOI: 10.1145/2784731.2784754.

URL: http : / / doi . acm . org / 10 . 1145 / 2784731 . 2784754 (visited on

06/05/2018).

[43] Semen A. Trygubenko and David J. Wales. “Graph Transformation Method for

Calculating Waiting Times in Markov Chains”. In: The Journal of Chemical

Physics 124.23 (June 2006), p. 234110. ISSN: 0021-9606. DOI: 10.1063/1.

2198806. URL: http://aip.scitation.org/doi/full/10.1063/1.

2198806 (visited on 01/17/2018).

[44] Semen A. Trygubenko and David J. Wales. “Kinetic Analysis of Discrete Path

Sampling Stationary Point Databases”. In: Molecular Physics 104.9 (May 2006),

pp. 1497–1507. ISSN: 0026-8976. DOI: 10.1080/00268970600556659. URL:

https://doi.org/10.1080/00268970600556659 (visited on 01/17/2018).

[45] Yatish Turakhia, Gill Bejerano, and William J. Dally. “Darwin: A Genomics

Co-Processor Provides Up to 15,000X Acceleration on Long Read Assembly”.

In: Proceedings of the Twenty-Third International Conference on Architectural

Support for Programming Languages and Operating Systems. ASPLOS ’18.

New York, NY, USA: ACM, 2018, pp. 199–213. ISBN: 978-1-4503-4911-6.

https://doi.org/10.1145/2544137.2544155
http://doi.acm.org/10.1145/2544137.2544155
https://doi.org/10.1145/2737924.2737960
https://doi.org/10.1145/2737924.2737960
http://doi.acm.org/10.1145/2737924.2737960
https://doi.org/10.1145/2784731.2784754
http://doi.acm.org/10.1145/2784731.2784754
https://doi.org/10.1063/1.2198806
https://doi.org/10.1063/1.2198806
http://aip.scitation.org/doi/full/10.1063/1.2198806
http://aip.scitation.org/doi/full/10.1063/1.2198806
https://doi.org/10.1080/00268970600556659
https://doi.org/10.1080/00268970600556659

64 BIBLIOGRAPHY

DOI: 10.1145/3173162.3173193. URL: http://doi.acm.org/10.1145/

3173162.3173193 (visited on 06/05/2018).

[46] Chenglong Wang, Alvin Cheung, and Rastislav Bodik. “Synthesizing Highly

Expressive SQL Queries from Input-Output Examples”. In: Proceedings of the

38th ACM SIGPLAN Conference on Programming Language Design and Im-

plementation. PLDI 2017. New York, NY, USA: ACM, 2017, pp. 452–466.

ISBN: 978-1-4503-4988-8. DOI: 10.1145/3062341.3062365. URL: http:

//doi.acm.org/10.1145/3062341.3062365 (visited on 09/18/2017).

[47] Ke Wang et al. “An Overview of Micron’s Automata Processor”. In: Proceed-

ings of the Eleventh IEEE/ACM/IFIP International Conference on Hardware/Software

Codesign and System Synthesis. CODES ’16. New York, NY, USA: ACM, 2016,

14:1–14:3. ISBN: 978-1-4503-4483-8. DOI: 10.1145/2968456.2976763. URL:

http://doi.acm.org/10.1145/2968456.2976763 (visited on 11/27/2017).

[48] Mohamed Zahran. “Heterogeneous Computing: Here to Stay”. In: Queue 14.6

(Dec. 2016), 40:31–40:42. ISSN: 1542-7730. DOI: 10.1145/3028687.3038873.

URL: http : / / doi . acm . org / 10 . 1145 / 3028687 . 3038873 (visited on

07/03/2018).

https://doi.org/10.1145/3173162.3173193
http://doi.acm.org/10.1145/3173162.3173193
http://doi.acm.org/10.1145/3173162.3173193
https://doi.org/10.1145/3062341.3062365
http://doi.acm.org/10.1145/3062341.3062365
http://doi.acm.org/10.1145/3062341.3062365
https://doi.org/10.1145/2968456.2976763
http://doi.acm.org/10.1145/2968456.2976763
https://doi.org/10.1145/3028687.3038873
http://doi.acm.org/10.1145/3028687.3038873

	Introduction
	Related Work
	Heterogenous Computing and Accelerators
	Accelerator-Friendly Workloads
	Using Accelerators in Programs
	Summary

	Mapping and Optimisation
	Domain-Specific Languages
	Runtime Libraries
	Automatic Mapping

	Program Synthesis

	Background
	Program Synthesis
	Definitions and Terminology
	Challenges and Difficulties
	Summary

	LLVM
	Sparse Linear Algebra
	Storage
	Matrix-Vector Multiplication

	Case Study
	Finding SPMV in Code
	SPMV Benchmark Suite
	Benchmark Results
	Experimental Setup
	Results

	Predicting Performance
	Summary

	Implementation
	Framework
	Synthesizer Interface
	Technical Details
	Summary

	AccSynt
	Parameter Annotations
	Loops
	Synthesis
	Summary

	Evaluation
	Expressivity
	Linear Algebra Problems
	Unsupported Patterns

	Performance
	Synthesis Time
	Stochastic Methods

	Summary

	Conclusion
	Future Work
	Control Flow and Components
	Code Search
	Generalising AccSynt

