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Abstract

This paper is concerned with synthesizing programs based
on black-box oracles: we are interested in the case where
there exists an executable implementation of a component
or library, but its internal structure is unknown. We are
provided with just an API or function signature, and aim to
synthesize a program with equivalent behavior.

To attack this problem, we detail PRESYN: a program syn-
thesizer designed for flexible interoperation with existing
programs and compiler toolchains. PRESYN uses high-level
imperative control-flow structures and a pair of cooperating
predictive models to efficiently narrow the space of potential
programs. These models can be trained effectively on small
corpora of synthesized examples.

We evaluate PRESYN against five leading program synthe-
sizers on a collection of 112 synthesis benchmarks collated
from previous studies and real-world software libraries. We
show that PRESYN is able to synthesize a wider range of
programs than each of them with less human input. We
demonstrate the application of our approach to real-world
code and software engineering problems with two case stud-
ies: accelerator library porting and detection of duplicated
library reimplementations.

CCS Concepts: « Software and its engineering — Gen-
eral programming languages; Automatic programming;
Programming by example; Genetic programming.

Keywords: program synthesis,black box oracle,probabilistic
model

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies
are not made or distributed for profit or commercial advantage and that
copies bear this notice and the full citation on the first page. Copyrights
for components of this work owned by others than the author(s) must
be honored. Abstracting with credit is permitted. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee. Request permissions from permissions@acm.org.
GPCE 20, November 16—17, 2020, Virtual, USA

© 2020 Copyright held by the owner/author(s). Publication rights licensed
to ACM.

ACM ISBN 978-1-4503-8174-1/20/11...$15.00
https://doi.org/10.1145/3425898.3426952

Jackson Woodruff
School of Informatics
University of Edinburgh
Edinburgh, United Kingdom
J.C.Woodruff@sms.ed.ac.uk

Michael F.P. O’Boyle
School of Informatics
University of Edinburgh
Edinburgh, United Kingdom
mob@inf.ed.ac.uk

ACM Reference Format:

Bruce Collie, Jackson Woodruff, and Michael F.P. O’Boyle. 2020.
Modeling Black-Box Components with Probabilistic Synthesis. In
Proceedings of the 19th ACM SIGPLAN International Conference
on Generative Programming: Concepts and Experiences (GPCE ’20),
November 16—17, 2020, Virtual, USA. ACM, New York, NY, USA,
14 pages. https://doi.org/10.1145/3425898.3426952

1 Introduction

Modeling and understanding the behavior of software com-
ponents is a key issue in software engineering [14]. It has
been used to discover similarity between libraries [54], re-
juvenate code [35] and match accelerators to software [19].
While a formal model of a component may be available, it
is often supplied as low-level binary or not at all [35]. Our
goal is to model such "black-box" software components, in a
form suitable for interoperation with real world code using
program synthesis.

For the sake of wide applicability, we make minimal as-
sumptions about the component being modeled: we require
only that it exists in an executable form and has a known
type signature. This paper therefore addresses the problem
of program synthesis based on the observed behavior of an
oracle performing an existing, but unknown computation
[31]. We have no knowledge of the oracle’s internal struc-
ture, but capturing its behavior in the form of input-output
(IO) examples is inexpensive.

This problem falls under the domain of programming by
example which has received considerable interest from in-
dustry [28]. Here, the aim is to synthesize a program from
user provided examples [9, 27]. Our approach differs from
the standard formulation in that IO examples are effectively
free, as we do not rely on the user.

Our approach is distinct to much prior work, where their
aim is to generate provably correct programs with respect
to a formal specification (typically making use of counter-
examples and SMT solvers) [6, 13, 17]. Instead, it is closer
in spirit to neural synthesis approaches [10, 36, 41], where
10 examples are the specification of a task. These schemes,
however, are currently limited in the problem domains that
can be addressed. [44].

Like previous work which attempts to synthesize without
a formal specification, we cannot guarantee correctness of
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Figure 1. A summary of PRESYN’s implementation. Fragment distributions are learned by IID and Markov models using the
problem specification and initial fragment population. Sketches are then sampled and synthesized into executable programs.

the generated program [9]. However, testing over a large
set of examples can provide observational equality, which
is widely accepted as a sufficiently strong guarantee [18] in
the absence of formal proof.

Sketching. Our approach uses ideas from sketching pro-
gram synthesis [52]: a high level partial structure, or sketch,
of the target program allows for efficient search through
a space of potential solutions. While many techniques use
externally provided sketches [51], our scheme uses a two-
phase synthesis process [55] where sketches are constructed
by the synthesizer based on the problem specification (in
our case, a type signature and IO examples).

However, IO examples alone are not sufficient to synthe-
size programs that use complex components. We use prior
observations of synthesized program structure to build a
probability distribution over fragments of sketches given
a type signature and a set of IO examples. Specifically, we
develop two models: IID and Markov.

The first, IID, assumes independence among sketch frag-
ments (Independent and Identically Distributed), while the
second assumes the next fragment is dependent on the cur-
rent one (i.e. a Markov model). Using this approach, we syn-
thesize a wide range of complex components from black-box
specifications.

There is a large body of related work in this diverse area.
and providing a fair comparison is a challenge [29, 40]. In
this paper we attempt a fair, systematic and reproducible
evaluation of representative state-of the art existing schemes.

As our approach is driven by a probabilistic model of
sketches, we analyze the learned distributions and the result-
ing insights into program structure. We then evaluate the use
of black-box synthesis in two application areas: rejuvenating
legacy scientific code and detecting reimplementations of
library code.



Modeling Black-Box Components with Probabilistic Synthesis

1.1 Contributions

We implement a novel program synthesizer (PREsYN) that
uses lightweight probabilistic models to efficiently search for
solutions in varied problem domains. We evaluate PRESYN
against five other program synthesizers from different tradi-
tions: neural SKETCHADAPT [36], functional A2 [25], impera-
tive SimpL [51], type-directed TyPEDIRECT [19] and genetic
MAKESPEARE [48],
This paper makes the following main contributions:

e Probabilistic synthesis based on corpus priors with
broader synthesis results than existing work

e An extensive and systematic evaluation of example-
based synthesis from different research domains

e An analysis of sketch distributions across synthesized
programs

e Two case studies showing uses of black box synthesis
for software engineering

2 Overview

Figure 1 gives an overview of our program synthesizer, PRESYN.
It consists of four primary components: specification and
example construction; fragment population; probabilistic
fragment models and program synthesis.

Given a function signature, we can generate inputs by
sampling random values from the domain of each input
parameter. As we have an executable implementation of
the component, we evaluate it on these inputs and record its
output behavior (i.e. the function return value and any writes
to memory). The function signature and IO examples form
the component’s specification (SPECIFICATION in Figure 1).

The next step is to predict which fragments from a popu-
lation (FRAGMENT POPULATION) are most likely to appear
in a correct synthesized program, and the structure in which
they are most likely to do so in. We use two probabilistic
models, IID and Markov to do this (PREDICTION). The result
of this step is a distribution over program sketches.

The program synthesis phase (SYNTHESIS) samples from
this distribution to obtain potential program sketches. These
are then filled in with instructions to form a candidate pro-
gram. Candidates are then evaluated on the inputs to see
if they match the output. If one does, a correct solution is
reported.

2.1 Example

In order to illustrate the workflow illustrated in Figure 1, it
is worth considering each step in the context of an example
function. We begin with the specification:
float f(float *a, float *b, int c) {

// implementation details are unknown

3

The first step is to sample random input values for this
type signature, then pass them to the function to observe
the output value. For a single example:
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float a[]l = { 0.0, 1.2, -3.4, -5.6 };

float b[] = { -1.0, 1.2, 2.4, 3.2 };
int ¢ = 3;
float ret = f(a, b, ¢c); // ret == -6.72

Next, the most likely candidates from the population of
sketch fragments are identified. For this problem, a subset
of the initial population resembles:

{ loop(a),if(c),loop(),...,loop(c), affine(), index() }

A full description of the semantics of each of these frag-
ment types is given in Section 4. From this population, our
IID model identifies the fragments likely to appear in a solu-
tion. For this example type signature, these are:

{ loop(a, c),loop(b, c),loop(a, b, ¢), linear() }

Next, our Markov model identifies the probability that a
particular sequence of these fragments will form the struc-
ture of a correct solution:

P(loop(a, b, ¢) o linear()) = 0.2

P(linear() o loop(c)) = 0.01

Sketches are sampled using these probabilities. For each
sketch, code is generated. For the most likely composition
above, as C:
float f(float *a, float *b, int c¢) {

for(int i = 0; i < c; ++i) {

float ea = a[il], eb = b[il;

Finally, additional instructions are enumerated and added
to the generated code to produce solutions. In the case of
this example, a correct program is:

float f(float *a, float *b, int c¢) {

float g = 0.0f;

for(int i = 0; i < c; ++i) {
float d = al[il, e = b[i];
float h = d * e;
g =g+ h;

3

return g;

3

By probabilistically identifying likely control flow struc-
tures, the synthesis of a complex looping program is reduced
to a smaller enumerative search. Sections 4 to 6 give detailed
insight into each of these steps individually.

3 Specification

The primary input given to any program synthesizer is a
specification describing the problem for which to synthesize
a solution. While some synthesizers provide specifications
in the form of manually constructed examples, PRESYN does
not: it specifies synthesis problems in terms of an existing
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implementation; the goal is to capture the behavior with a
synthesized solution.

PRESYN uses only two inputs to specify a synthesis prob-
lem: the type signature of the target function, and a shared
library containing an implementation with that signature.
There are no restrictions on the internal details of this im-
plementation.

3.1 Signature

PRESYN aims for interoperability with C; the programs it
synthesizes should be ABI-compatible with the reference
implementation. PRESYN supports the primitive C types char,
int and float, pointers to these types and void *.

This type system allows for greater flexibility in speci-
fication than many other synthesizers do. For example, a
common restriction is for synthesizers to only consider pro-
grams from lists to lists, or lists to single values [10, 24]. In
this model, programs are functional and cannot modify state,
a restriction not shared by PResyN. By using an existing,
real-world type system, PRESYN expresses problems more
naturally than other synthesizers are able to.

3.2 10 Examples

PRESYN generates scalar input parameters by sampling uni-
formly from fixed-size intervals. Pointer input data is gener-
ated by allocating a block of memory and generating each
element using the scalar generation strategy. Input data is
then passed to the target component; the return value and
any pointer parameters make up the recorded output.

We operate under the assumption that observational equiv-
alence (i.e. equivalence over a large set of IO examples) is
sufficient. This assumption is shared by other work [9, 18].
While in theory functions may exhibit different behavior
on a sparse subset of the input space, we did not find any
examples of this in practice.

4 Fragments

PRESYN uses component-based, sketching program synthesis
to construct programs; the structure of a solutions is deter-
mined by the composition of smaller parts, or fragments.

Definition. We define a set F of fragments, and a set P
containing concrete programs in a target language, with
supported operations:

compose : F XF — F
compile :F — P
These operations are total; there are no invalid or interme-

diate states in this representation. For fragments a, b, c we
write:

>

aob = compose(a,b)

aoboc = (aob)oc

Bruce Collie, Jackson Woodruff, and Michael F.P. O’Boyle

Table 1. Summary of fragments used by PRESYN to perform
synthesis, organized by their high-level semantic categories.

Group ‘ N Description

Computation | 5 Control flow-free regions of code
that represent “holes” into which con-
crete instructions can be instantiated.
Includes specialized structures (e.g.
affine array index expressions).

Iteration 3 Loop variants with different condi-
tions for termination (e.g. a fixed up-
per bound, or a predicate test).

Control Flow | 3 Conditional control flow, as well as
sequential execution of sets of frag-
ments.

Additionally, we consider functions onto F (templates).
For example, the function

fixed-loop : N — F

represents a fragment template for loops to a fixed upper
bound € N; we use templates to parameterize fragments over
argument names in a specification.

Example. The semantics of compose and compile are de-
fined by the implementation of each fragment in F. Con-
sider the fragments fized-loop(5) and skip. The definition
of compile for these fragments (to C) is:

|>

compile(fized-loop(5)) £ for(int i=0;i<5;++i) {3}
{3

13

compile(skip)

The fized-loop fragment compiles to an empty loop, while
the skip compiles to an empty statement. Composition as de-
fined by each fragment produces more interesting structure.

Forall f € F:

compose(fized-loop(5), f) = fized-loop(5) ¢
compile( fived-loop(5) )
for(int i=0;i<5;++i) {compile(f)}

13

4.1 Fragment Population

PRESYN uses a library of 11 different types of fragment; an
overview of these is given in Table 1.

The aim for these components was to remain as general
as possible so that PRESYN can express many different pro-
grams, while not biasing towards one problem domain at
the expense of others. We selected some fragments based
on intuition for common programming practices, and the re-
mainder from high-level idiomatic patterns used in compiler
analyses [26].
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Figure 2. Training process for our IID and Markov models based on corpus data.

5 Probabilistic Models

PRESYN uses two probabilistic models to guide synthesis.
The first, IID, predicts whether each fragment in the popu-
lation is likely to appear in a solution or not. The second,
Markov, creates a probability distribution over sequences of
fragments that form compositions.

5.1 IID

After generating input-output examples (SPECIFICATION in
Figure 1), PRESYN collects an initial set of fragments Fy C F
from which solutions may be composed (PREDICTION in Fig-
ure 1). The library of fragment templates used by PRESYN is
too large to perform an exhaustive search, and so accurately
predicting likely fragments is important.

Suppose fo, fi, ..., fn is an ordered sequence of fragments
that when composed, produces a correct solution for a syn-
thesis problem. We aim to predict an initial set of fragments
Fo that matches {fy, fi,..., fn} as accurately as possible
(without considering ordering). To do so, we combine two
ideas:

Fragment Semantics. It is possible to make observations
about the behavior of the reference implementation based on
the input-output examples generated for testing. For exam-
ple, if a memory region is written to in any of the observed
examples, then that region represents an output reference
parameter. If such parameters are present, then the set of
fragments capable of performing output is collected as Fg.

Classification Model. As well as semantic knowledge,
we employ a simple classification model to determine inclu-
sion in Fy for non-output fragments. To do this, we require
a small corpus of training data: type signatures and F( for

successfully synthesized programs. We train a random forest
model, using the type signatures as the input and a binary in-
clusion indicator for each fragment as the target. This trained
model provides a decision function P that determines frag-
ment inclusion in Fy.

Writing Fp for the set of fragments satisfying the trained
decision function P, we define:

Fg=Fs U Fp

It is clear that it is safe for the prediction of Fy to over-
approximate the true initial set: if additional irrelevant frag-
ments are present, synthesis will simply be slower. However,
Fo may in fact be an under-approximation. This is addressed
by the next model in the synthesis process, Markov.

5.2 Markov

The set of initial fragments F( represents the starting point
for synthesis. However, in order to produce a solution struc-
ture, fragments must be composed in the correct order. Addi-
tionally, the process of generating these compositions should
be robust if F is an under-approximation.

Our model for generating these compositions uses the
same training data as IID, but treats fragment occurrences
as a Markov model rather than a collection of IID random
variables. This model is defined as follows:

Definitions. We define auxiliary fragments fiart, fend
that both act as the identity under composition, along with
a function w such that w(f, f’) represents the number of
occurrences of the composition f o f’ in the training set.

Training. As with IID, training data for Markov com-
prises correctly synthesized programs together with the
composition of fragments used to generate that program.
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To train the model, each observed composition of fragments
has fstqr+ prepended and fe,,4 appended. The composition
sequences are then split into pairs, and the number of oc-
currences of each unique pair is recorded and used to define
w.

Generating a Composition. Sequences of fragments (rep-
resenting compositions) can be sampled from Markov as
follows. First, we define:

s(H) 2 D whf)
f'eF
Then, starting from f;;,,+ we sample fragments with condi-
tional probability:
w(fn-1, fn)
P, )= ——
(fn|fn 1) 3(ﬁ1—1)

To include the predicted initial set of fragments Fg, we
then define an augmented model w’:

w(fi. fj) = w(fi. fi) if fj € Fo

0 else

1>

The sum s’ is defined identically to s, but with respect to
w’ rather than w. Similarly, P’ is defined with respect to
w’ and s’ rather than w and s. With a weighting parameter
b € [0,1] chosen, fragments are sampled with probability:

P(falfa-1) = bP, (falfa-1) + (1 = )Py (fal fa-1)

A sequence of fragments fy o --- o f, is generated by
sampling from this distribution until £, is sampled, or to
a fixed maximum length. The sequence is then composed
(from left to right) to produce a program sketch.

6 Synthesis

The next stage in the synthesis process is to generate con-
crete programs from candidate sketches generated by our
Markov model. They are then executed and tested against
the input-output examples collected at the specification step.

Fragments can be compiled to a concrete program in LLVM
[34] intermediate representation, but the resulting programs
cannot yet be executed:

o They do not perform any meaningful computation; the
programs do not yet contain any instructions beyond
those used for control flow and program structure.

e The programs contain placeholders: typed SSA vari-
ables in the program that do not yet have a defined
value. For example, a fragment that implements a while-
loop may use a boolean placeholder as the loop con-
dition. It cannot be executed until a concrete value is
chosen to fill the placeholder.

To resolve these issues, we traverse the dominance tree
of the compiled function in-order. For each basic block, we
maintain a set of instructions that could be added to it based
on the live SSA values at the block’s entry. We use an enu-
merative search to instantiate different concrete programs
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from the compiled fragment. Once a set of instructions has
been selected by this search, a value for each ¢ node and
placeholder is chosen by a secondary search.

Safety. Because synthesized programs are able to perform
potentially arbitrary memory accesses, PRESYN implements a
conservative, compile-time bounds checking system. During
synthesis, all allocated memory passed to the synthesized
programs has the same size. If programs make out-of-bounds
accesses, the size is increased for future attempts up to a
configured maximum. Bounds-checking code is removed
when reporting solutions to accurately reflect algorithmic
intent.

6.1 Testing

PRESYN specifies problems by collecting a large number of
input-output examples from the black-box component. The
correctness of a candidate program is specified as observa-
tional equivalence: if the candidate program behaves identi-
cally to the reference component on every input generated,
then it is correct.

While it is possible that observational equality (even over
a large set of examples) is unsound, it is not possible to
implement a better decision procedure for an arbitrary black
box. This is an observation shared by other work [9].

7 Experimental Setup

Benchmarking program synthesizers against each other fairly
while allowing for differences in specification and expres-
sion is a challenging problem [29, 40]. This section describes
our experimental methodology for evaluating PREsYN and
comparing its performance to other program synthesizers.

7.1 Overview of Methodology

We identify a collection of benchmark synthesis problems
collated from existing work on program synthesis, as well
as from real-world software components. For each of these
problems, we prepare a specification for PREsYN as described
in Section 3, then attempt to synthesize a solution.

We evaluated PRESYN against five other state-of-the art
program synthesizers. Doing so requires benchmarks to be
fairly translated; a non-trivial task when accounting for the
differences between them.

7.2 Implementations

We had four primary criteria for selecting implementations to
compare against. First, they should target a ‘general-purpose’
language. This ruled out synthesizers such as [17] or [13]
that target specific problem domains using SMT-aided for-
mal techniques. Typically, the problem space for programs
with arbitrary control flow is too large for these solver-aided
techniques [51] and other methods are required. Second, the
implementations selected should be representative of the
current baseline synthesis performance for target languages
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similar to their own. Third, the set of implementations should
cover a range of different program synthesis methods. Fi-
nally, the implementations should be available for evaluation
and testing; we aim to make our own implementation and
evaluation available in turn. With these goals in mind, the
implementations selected are:

SKETCHADAPT. [36] is a neural synthesis approach. It
samples programs from a DSL to generate training data for a
generative model that predicts programs from IO examples.
Its chief innovation is to adapt to IO complexity, falling back
to synthesis when generation is predicted to be too expensive.
It represents the state-of-the-art in neural synthesis.

TyPEDIRECT. [19] uses program synthesis to enable refac-
toring of legacy scientific software to use new libraries. It
uses a black-box specification to generate IO examples simi-
larly to PRESYN, but requires extensive annotation of function
signatures to do so.

MAKESPEARE. [48] represents the state-of-the-art for ge-
netic program synthesis [11] of programs with complex con-
trol flow, and contributes a novel hill-climbing algorithm.
Synthesized programs are in a subset of x86 assembly, and
problems are specified by providing ‘before and after’ mem-
ory and register state for an abstract machine.

SimpL. [51] targets imperative programs written in a small
C-like language. Its key innovation is the use of static anal-
ysis techniques to prune the search space of candidate pro-
grams to ensure that ‘dead ends’ are not explored unneces-
sarily. The programs it is evaluated on are designed to model
introductory programming exercises with control flow and
mutable variables; problems are specified using handwritten
input-output examples and a partial program sketch.

AZ. [25] targets a functional language that permits alge-
braic data types. It uses a type-aware recursive search process
over a space of expressions. Programs synthesized are com-
positions of a standard library of functions and higher-order
functional primitives. Like S1MPL, problems are specified by
handwritten input-output examples, and in some cases a
recursive base case must be supplied.

7.3 Benchmark Collation

We collated a set of 112 synthesis problems from two sources:
the benchmarks used by existing synthesizers, and real-
world software libraries. The sets of problems selected are
summarized in Table 2.

Existing Benchmarks. Each synthesizer evaluated uses
its own set of synthesis benchmarks, with some partially
overlapping. We began with the full set of benchmarks from
each of [25, 48, 51] then removed duplicate entries. We then
added a representative sample of problems from [36]. To cre-
ate a more level playing field, we then removed problems for
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which only one synthesizer was specialized towards. For ex-
ample, TYPEDIRECT includes extensive type annotations that
allow it to synthesize sparse-matrix vector multiplication,
and A? includes tree-processing primitive functions.

Black-Box Components. In [19], TyPEDIRECT is used to
synthesize implementations of 11 functions shared between
a set of optimized mathematical libraries such as Intel MKL
[2] or Nvidia cuBLAS [5]. We extended this set to include ad-
ditional mathematical operations found in other real-world
libraries: Mathfu [3] and the TI signal processing libraries
[1]. Additionally, we identified string processing functions as
a common target domain for program synthesis [27, 41, 43].
We identified the C standard library string functions [4] as a
realistic target.

7.4 Problem Preparation

The synthesis benchmarks we selected are all specified using
different formats. For each problem, we therefore produced
a reference implementation in C based on the specifications
in the original papers for existing benchmarks, and based
on the concrete implementation for real-world code. We
then generated an appropriate number of IO examples in the
correct format for each one.

In some cases, this required some adaptation. For example,
most synthesizers do not support floating point computation;
we restated these using integers where appropriate, with the
aim of preserving the intent of each problem.

7.5 Synthesizer Help

Although we are interested in black-box IO example synthe-
sis, many of the synthesizers rely on varying degrees of help.
We evaluate them with and without the following assistance:

SKETCHADAPT. did not receive any extra help to solve
each problem. It does has some difficulties surrounding the
integer type, so we convert integers to singleton lists where
invalid input types are detected.

TyPEDIRECT. TYPEDIRECT requires semantic annotations
to be applied to the type signature of a target function (for
example, “the pointer x points to N elements”). These annota-
tions are used as heuristics to guide the search for potential
candidate structures.

MAKESPEARE. uses a small number of registers values
which provide some aid to guiding program generation, how-
ever in practice this had little impact on behavior. Unlike
other schemes it required a large number of examples, typ-
ically in the thousands. We observe that MAKESPEARE is
dependent on the large, and varied, set of input examples in
many cases.

SIMPL. relies on a partial program and a list of useful in-
teger constants as input. We provide the correct number of
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Table 2. Groups of synthesis benchmark problems

Problems that require loops to manipulate arrays of integers in place. We use the full set of benchmarks
Arithmetic manipulations of integer values, requiring loops and data-dependent control flow. We use
Problems stated over integer arrays, with different styles required (e.g. pairwise iteration, reductions
and elementwise computation). We use the full set of array benchmarks from [51].

Singly-nested integer linked-list manipulation problems from [25], restated for other synthesizers as

A series of generated list problems, taken as representative samples from the 500 program evaluation

The C standard library’s string processing functions [4]. We remove impure functions such as strtok.
Vector-scalar and vector-vector mathematical functions from the Mathfu [3] library.

Matrix-vector linear algebra functions from the BLAS [12] standard as synthesized in [19]. We disregard

Group N Description
makespeare 11
from [48], modulo those adapted from [51].
simpl-int 15
the full set of integer benchmarks from [51].
simpl-array 12
A28
array problems.
SketchAdapt 10
file presented by [36].
string 16
mathfu 15
blas 4
functions such as spmv for which extensive assistance was required.
dsp 21

Vector- and matrix-based signal processing functions from the TI signal processing library [1], adapted
for platform portability and removing functions with requirements for extensive constant data such as

filter taps.

top-level loops and the correct number of variable initializa-
tions, which is consistent with many (but not all) of their
benchmarks.

A2, can exploit an extensible library of base cases. We
provide accesses to its standard library of base cases

PREsYN. does not require additional help.

8 Results

This section presents our experimental results based on
the framework presented in the previous section. For cross-
evaluation and when comparing IID to Markov, PRESYN was
trained on a randomly selected subset (15%) of the synthesis
problems for which we identified correct fragment structure.

8.1 Coverage

The primary evaluation criteria for PREsYN against other syn-
thesizers is the number of programs it is able to synthesize.
We evaluated each synthesizer in three contexts for each syn-
thesis problem: with no additional help beyond IO examples
for the problem (i.e. no annotated types or program struc-
ture), with the appropriate help as described in Section 7.5
and a conservative timeout, and finally unrestricted (with
help). These results are shown in Figure 3.

PRESYN is able to successfully synthesize more functions
across the set of synthesis benchmarks than each of the other
implementations, even when they are given appropriate as-
sistance and unlimited execution time: 89% of the functions

evaluated, while the next-best performing (MAKESPEARE)
synthesizes only 65%. On real-world code, PREsYN synthe-
sizes 93% vs. 63% for TYPEDIRECT. The full results for each
synthesizer and library are given in Table 3. Interestingly, it
is not the case that each synthesizer performs best on its own
benchmarks or that each set of benchmarks is best synthe-
sized with the corresponding implementation; this is likely
due to the differences in setup between our experiments and
the original work. Nonetheless, it indicates that synthesis is
by nature a fragile problem to evaluate experimentally.

MAKESPEARE required a large number of examples, typi-
cally in the thousands but for some programs, e.g. factorial,
thousands of examples would not fit within normal-width
integers. MAKESPEARE did not seem particularly influenced
by help but requires an extremely long time to synthesize

For SimpL we found that ignoring the partial program
input entirely produced very poor results. It struggled signif-
icantly on many benchmarks without the desired program
structure as input.

For A2, there were a small number of examples where
providing a recursive base case for a problem as help made
a difference.

SkeTcHADAPT suffered from poor performance on general-
purpose problems. We found that SketchAdapt was only
successful on trivial examples outside its own evaluation
domain and in fact found that it was unable to reproduce
its own results once the input values were changed. As it
has the least mature implementation, this is perhaps not
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Figure 3. Proportion of the synthesis benchmark set synthesized by each implementation under favorable conditions (see
section 7.5), and when restricted by time limits and reduced help.

Table 3. Proportion of each group of synthesis benchmarks synthesized by each synthesizer under favorable conditions (see

section 7.5)

Group | TyYPEDIRECT MAKESPEARE SIMPL A° SKETCHADAPT ‘ PRESYN
makespeare 0.20 0.64 0.09 045 0.00 0.55
simpl-int 0.00 0.80 0.73  0.20 0.00 0.93
Benchmarks  simpl-array 0.58 0.75 0.58  0.58 0.08 0.92
A2 0.43 1.00 0.38 0.75 0.00 1.00
SketchAdapt 0.20 0.50 0.00  0.10 0.10 0.50
Mean 0.26 0.73 0.39 0.39 0.04 0.79
string 0.00 0.23 0.13  0.56 0.00 0.75
mathfu 1.00 0.60 0.67  0.47 0.13 1.00
Libraries blas 0.75 0.00 0.00  0.00 0.00 1.00
dsp 0.90 0.26 0.40  0.38 0.00 1.00
Mean 0.92 0.33 0.38 0.48 0.04 0.93
Mean ‘ 0.53 0.54 0.39 0.43 0.04 0.86

unexpected. Further, we have taken SKETCHADAPT further
out of its comfort zone than any of the other synthesizers
evaluated here—it is intended to perform well on restricted
problem domains where the generalizations required are
much smaller where the dataset covers a more significant
fraction of the program space. Examples of this can be seen
within the original paper, where Nye et al. [36] find high
accuracy on a number of different subdomains.

When synthesis time is limited or less help is provided
for a synthesis problem, PRESYN exhibits an even greater
advantage over other implementations. Both A% and StmpL
exhibit degraded synthesis when assistance is not given (not
shown in Figure 3 is that successful syntheses took up to
300x longer to discover in these cases). MAKESPEARE’S use
of a genetic algorithm means that it relies on being able
to spend a long time searching a space of programs, and
struggles when a timeout is imposed.

8.2 Synthesis time and validity

The amount of time spent in synthesis by each scheme varied
considerably. PREsYN, A2 and Stmpr all showed mean synthe-
sis times (for successful cases) of less than 120 s. SKETCHADAPT
required longer, with a mean synthesis time of 914 s. Because
of its reliance on genetic search, MAKESPEARE used a mean
of 4522 s per synthesized program, with some taking up to
3x this long before being timed out.

The size of programs generated by PREsYN varied from 40
to 110 lines of LLVM IR. As we do not have a formal specifica-
tion, we can only test synthesized programs, not verify them.
For every PREsYN synthesized program, we automatically
generated random and boundary value inputs and checked
if outputs matched those from the target black-box function.
In all cases we find them behaviorally equivalent.

Given that we have access to the component code generat-
ing the IO examples, we manually inspected the synthesized
results. In all cases, using our knowledge, we judged them
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Table 4. Jaccard coeflicient for predictions of the initial frag-
ment set F across each set of synthesis problems.

Group ‘ Jaccard

makespeare 0.77
Benchmarks i simpl-int 0.85
simpl-array 0.87
22| 072
SketchAdapt 0.72
string 0.72
ibrari mathfu 0.90
Libraries blas -
dsp | 077
All Mean | 0.81
60
n
&
£ 40
o
© 2 —
S
Markov
0

0 5000 10000 15000 20000 25000
Candidates

Figure 4. Functions synthesized vs. candidates evaluated
using the IID and Markov models of synthesis.

to be correct. Future work will examine the use of bounded
model checking as a means of providing greater assurance.

8.3 Impact of Probabilistic Models

IID. PRESYN uses two probabilistic models to drive its
synthesis. The first, IID, predicts fragments that are likely to
form part of a correct solution using a random forest model
and a limited model of fragment semantics.

The accuracy of these predictions (measured using the Jac-
card coefficient of predicted and true Fy) is given in Table 4.
On average, there is an 81% overlap between the predicted
value and the true value. IID is not significantly over- or
under-approximating in its predictions; this overlap corre-
sponds to < 1 prediction errors per problem.

Markov. The second model aims to predict the correct
order in which to compose fragments to produce a program
sketch. To evaluate Markov, we compare the number of pro-
grams synthesized by PRESYN against only the IID model.
These results are shown in Figure 4. We see that Markov
significantly accelerates the synthesis process; it is able to

Bruce Collie, Jackson Woodruff, and Michael F.P. O’Boyle

synthesize 60 programs using fewer than half as many candi-
date programs. In the ‘long tail” of programs, the difference
is smaller as the complexity of synthesis is dominated by the
search for long sequences of instructions.

8.4 Insights into Program Structure

As well as outperforming competing implementations on
a wide range of synthesis problems, PREsYN provides inter-
esting statistical insights into the structure of the programs
it synthesizes through its use of probabilistic models. The
results in this section summarize the distributions learned by
PRESYN over its full set of synthesized programs: the models
learned on the 15% subset are updated with all subsequent
observations, but these are not used during synthesis.

In Figure 5 we show three different insights into the struc-
ture of programs synthesized by PREsyN. First, in Figure 5a
we see the relative frequency of each type of fragment across
benchmark groups. Linear blocks of code are common across
all the benchmarks; every program performs some kind of
computation. In terms of control flow, the easiest synthesis
benchmark suites (simpl-int, simpl-array, mathfu, A?) are
those with largely homogeneous control flow across their
benchmarks, while the more challenging ones (makespeare,
string, SketchAdapt) have far more variation. These results
suggest that at least an approximate notion of difficulty for
a set of synthesis benchmarks is the heterogeneity in code
structure required to solve the problems in that set. Other
intuitive structure that can be observed is the ubiquity of
nested loops in the blas matrix-vector problems.

Figure 5b shows the number of fragments of each type
that appear in synthesized solutions, grouped by unique
type signatures (for the 12 most common signatures). Two
patterns become apparent from this visualization: the most
common type signatures dominate the set of benchmarks,
and the fragments used by solutions are generally consistent
for each type signature.

Finally, Figure 5c¢ shows the transition probabilities from
our Markov model. From this visualization, we can see that
the model favors generating smaller programs: most frag-
ments are most likely to be followed by a linear fragment,
which is itself likely to end the synthesis.

8.5 Case Studies

Synthesizing programs that match the behavior of a black
box has useful applications in a software engineering context
not enabled by other types of synthesis; in this section we
detail two of these use cases.

8.5.1 Rejuvenating Legacy Code. In [19], a system to
improve the performance of legacy scientific applications is
proposed. It uses TYPEDIRECT to synthesize programs match-
ing the behavior of library functions, such that compatible
user code can be remapped to use improved or optimized
versions of the functions.
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Figure 5. Insights into fragment distributions produced by our IID and Markov models.

This approach led to considerable performance improve-
ments of up to 10X on deep learning models, and close to 2x
on real-world chemical simulation benchmarks. However,
the synthesis techniques used are limited: only a small num-
ber of functions are considered, and annotations provided
by the user provide significant bias to the synthesis process.

As demonstrated by our results in Section 8, PRESYN out-
performs TyPEDIRECT across all the synthesis benchmarks
we considered, while requiring no annotations or assistance
to be provided by the user for synthesis problems. Of the 11
functions synthesized in [19], PRESYN is able to synthesize
10 (the exception being sparse matrix-vector multiplication,
which TyPEDIRECT requires extensive assistance for). Addi-
tionally, we were able to synthesize a further 12 functions
from the libraries used in [19] using PRESYN; all 22 syntheses

were performed without manual type annotation. By using
PRESYN, more opportunities for performance improvement
and an improved API migration can be generated.

8.5.2 Detecting Library Reimplementations. A well-
known problem in software engineering is code duplica-
tion, particularly when the duplicated functionality has al-
ready been implemented by a third-party library [49]. We
performed an initial case study to show the application
of PRESYN to this problem, discovering 163 instances in
real-world applications where library functionality is re-
implemented.

Table 5 lists the applications we evaluated in this case
study; all were written in C or C++. Our methodology was
as follows: first, function implementations from the libraries
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Table 5. Number of discovered instances in user applications
where code duplicates library functionality.

Software LoC Library N
Mathfu 10

FFmpeg 1,061,655 BLAS 3
DSP 11

Coreutils 66,355 String 10
. Mathfu 35
GraphicsGems 46,619 DSP 26
BLAS 5

Darknet 21,299 Mathfu 3
DSP 5

Nanvix 11,226 String 10
Mathfu 29

ETR 2,399 DSP 16
Total 163

in Table 2 were synthesized using PResyN. Then, an exist-
ing tool [19] was used to convert each of the synthesized
functions into a set of SMT constraints, which were then
passed to an off-the-shelf solver [26] to discover satisfying
instances in each of the applications. The number discov-
ered in each application is given in Table 5. Recent work
[20] aims to use probabilistic synthesis for a similar software
engineering task but does not evaluate the performance of
other synthesizers.

9 Related Work

Sketching. One of the most important developments in
program synthesis is the idea of sketching [52, 53]; it has
been used for a wide variety of purposes including auto-
parallelization [23] and SQL query generation [55]. Recent
technical developments include recursive tree transforma-
tions [30] and improved modularity of sketches [50]. Gen-
erally, such schemes require external sketch suggestions:
PRESYN automates this by constructing priors over program
corpora.

Types. Annotated types signatures or hints are often used
to direct program synthesis, most commonly for functional
programs [37, 38]. MYTH [39] uses type signatures along-
side examples to synthesize recursive functional programs,
while [45] uses refinement types to guide the search process
[45]. In [21] extended type information is suggested as a
means of improving program synthesis, and in [19] a simi-
lar approach is used as a means of accessing heterogeneous
accelerators for scientific applications. Our work considers
a wider, more diverse class of libraries and applications and
does not require human annotations or hints.

Bruce Collie, Jackson Woodruff, and Michael F.P. O’Boyle

Neural Program Synthesis. The machine learning com-
munity has long studied programming by example and input-
output based program synthesis. Recent work has examined
both induction (with a learned latent version of the program)
and generation, which uses a language model to generate
programs [8, 22, 42]

A recent trend in program synthesis is the use of neural
networks and machine learning. Generative approaches are
focused on developing neural architectures that interpret
programs intrinsically [47]. These approaches so far struggle
to generalize to large problem sizes and to complex semantic
models such as the compiler IR used by PRESYN.

Others have used neural components to improve the per-
formance of an existing synthesizer. For example, both [10]
and [56] aim to learn from input-output examples; both re-
quire fixed-size inputs and outputs and use a small DSL to
generate training examples. Learned programs are limited to
list processing tasks; the DSLs targeted by these (and similar
implementations such as SKETCHADAPT [36]) also rely on
high level primitive including (for example) primitives to
tokenize strings or perform list manipulations.

White-Box. Our approach to synthesis (from black box
oracles) is less widely studied than the corresponding white
box problem, where the internal structure or implementation
of a reference oracle is known. Existing programs in specific
problem domains are often used to synthesize optimized
implementations in a domain-specific language: the Halide
image-processing language [46] is targeted by several oracle-
based approaches, based on x86 assembly [35], Fortran [33]
and C++ [7] respectively. In [14], abstract descriptions of
software functionality are learned based on dynamic traces
and source code in order to facilitate refactoring and other
analyses.

Operating under the assumption of a black-box oracle
means that many existing approaches in program synthesis
do not apply or fail to generalize to our context [15, 16].
By using a black-box oracle we are able to avoid issues of
generalization across datasets [32, 41].

10 Conclusion

In this paper we have addressed the novel problem of black
box program synthesis, where problem specifications are
based on the observed behavior of an existing component
(rather than a human description). Our synthesizer, PRESYN,
achieves better performance across a wide range of synthesis
benchmarks (composed of both new and existing problems)
than five other competing synthesizers.

As well as strong synthesis performance, the simple proba-
bilistic models used to implement PRESYN provide interesting
insights into the structure and difficulty of synthesis prob-
lems. Our results on two case studies are promising and we
aim to pursue this further.
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