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Abstract
Sparse linear algebra is central to many scientific programs,

yet compilers fail to optimize it well. High-performance li-

braries are available, but adoption costs are significant. More-

over, libraries tie programs into vendor-specific software and

hardware ecosystems, creating non-portable code.

In this paper, we develop a new approach based on our

specification Language for implementers of Linear Algebra
Computations (LiLAC). Rather than requiring the application

developer to (re)write every program for a given library,

the burden is shifted to a one-off description by the library

implementer. The LiLAC-enabled compiler uses this to insert

appropriate library routines without source code changes.

LiLAC provides automatic data marshaling, maintaining

state between calls and minimizing data transfers. Appropri-

ate places for library insertion are detected in compiler in-

termediate representation, independent of source languages.

We evaluated on large-scale scientific applications written

in FORTRAN; standard C/C++ and FORTRAN benchmarks;

and C++ graph analytics kernels. Across heterogeneous plat-

forms, applications and data sets we show speedups of 1.1×

to over 10× without user intervention.

CCS Concepts • Software and its engineering→Com-
pilers; Specification languages.

Keywords sparse linear algebra, domain specific languages,

library integration, declarative langauges, data marshalling
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1 Introduction
Linear algebra is an important component of many appli-

cations and a prime candidate for hardware acceleration.

While there has been significant compiler effort in acceler-

ating dense algebra [23, 36, 40], there has been less success

with sparse codes. This is largely due to indirect memory ac-

cess, which challenges compiler analysis [32]. Sparse-based

algorithms are, however, increasingly important as the basis

of graph algorithms and data analytics [28].

We currently see the wide-scale provision of fast sparse

libraries [2, 3, 5, 55]. They deliver excellent performance,

but require significant programmer intervention and are

rarely portable across platforms. Alternatives, such as the

SLinGen/LGen system [45, 46], provide specialized code gen-

erators for linear algebra, but again require codemodification

by the programmer and focus only on dense computations.

Programmodification is particularly problematic when the

targets are hardware accelerators that require careful data

marshaling. Such modifications are often program-wide and

severely reduce the portability of the program. Furthermore,

they require a commitment to specific hardware vendors,

resulting in codebases that quickly become obsolete. In or-

der to mitigate this, many projects have to keep multiple

execution paths, resulting in arcane build systems and un-

maintainable code. In this time of rapid hardware innovation,

such a vendor lock-in is undesirable. In fact, the difficulty

of efficient portable integration is a key impediment to the

wider use of accelerator libraries and hardware.

In this paper, we reexamine how compilers and libraries

can be used to achieve performance without programmer

effort. Highly tuned and platform specific-libraries invariably

remain the fastest implementations available. However, we

show that we can automatically integrate these libraries

without polluting the source code. This is performed as a

compiler transformation step, leaving the original source

code intact and portable.

To achieve this, we develop a new specification language

for implementers of libraries, the specification Language for
implementers of Linear Algebra Computations (LiLAC). Using
LiLAC, library implementers specify with a few lines of code,

what a library does and how it is invoked. Our compiler then

determines where the library specificationmatches user code

and automatically transforms it to utilize the library. The

language has two complementing parts.

https://doi.org/10.1145/3377555.3377893
https://doi.org/10.1145/3377555.3377893
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for (cgit = 1; cgit <= cgitmax; cgit++) {
  for (j = 0; j < lastrow - firstrow + 1; j++) {
    sum = 0.0;
    for (k = rowstr[j]; k < rowstr[j+1]; k++) {
      sum = sum + a[k]*p[colidx[k]];
    }
    q[j] = sum;
  }
  d = 0.0;
  for (j = 0; j < lastcol - firstcol + 1; j++) {
    d = d + p[j]*q[j];
}

for (cgit = 1; cgit <= cgitmax; cgit++) {
  spmv_csr_harness(lastrow - firstrow + 1,
                   rowstr, colidx, p, a, q);
  d = 0.0;
  for (j = 0; j < lastcol - firstcol + 1; j++) {
    d = d + p[j]*q[j];
}

#include "mkl.h"

// …
void spmv_csr_harness(int rows, int* ranges,
    int* indir, double* vector, double* matrix,
    double* output) {

  sparse_matrix_t A;
  // …

  struct matrix_descr C;
  C.type = SPARSE_MATRIX_TYPE_GENERAL;
  C.mode = SPARSE_FILL_MODE_LOWER;
  C.diag = SPARSE_DIAG_NON_UNIT;
  mkl_sparse_d_mv(SPARSE_OPERATION_NON_TRANSPOSE,
      1.0, A, D, vector, 0.0, output);
}

↔

1

2

3

5

6

4 87

Figure 1. LiLAC applied to NPB Conjugate Gradient: Code (1) that matches the LiLAC-What specification (cf. Figure 2) is

replaced by calls to a harness (5) during compilation (2), resulting in an application binary (6) that corresponds to (hypothetical)

platform-specific source code (4). The harness is generated from the LiLAC-How specification (cf. Figure 2) to utilize Intel MKL.

LiLAC-What is a high-level language to describe sparse and
dense linear algebra computations. The LiLAC compiler uses

it to detect such functionality in user applications at compiler

intermediate representation level. It is powerful enough to

formulate linear algebra routines, yet remains independent

of compiler internals and is easy to understand and program.

LiLAC-How specifies how libraries can be used to perform

a LiLAC-What-specified computation. Besides generating

setup code and handling hardware context management, it

crucially enables efficient memory synchronization. It uses

memory protection mechanisms to automatically track data

changes and transfers memory only when necessary.

The research contribution of this paper is a combination of

three techniques for the acceleration of sparse linear algebra:

• Accelerate unchanged source code by identifying sparse

linear algebra computations with backtracking search.

• Avoid vendor lock-in with an extensible specification

language that adapts to new accelerator libraries.

• Achieve program-wide memory synchronization with

only local transformations using memory protection.

Together, these techniques result in a system that works on

existing and novel software. It offers the full performance

of fast libraries, avoids vendor lock-in, and keeps the source

code easy to maintain and free from pollution.

2 Overview
Figure 1 shows the LiLAC-enabled compiler from the user

perspective. In the top left corner (1), we see unmodified

application source code. This is conjugate gradient from the

NAS-PB suite. To achieve good performance on Intel proces-

sors, the compiler (2) has been configured to offload native

sparse code to Intel MKL. Using a specification ofWhat com-

putations MKL supports, it recognizes the highlighted loop

as a suitable sparse matrix-vector product. Instead of passing

it on to the compiler backend for code generation, it inserts a

call to a harness function. This is performed on intermediate

code (3) and results in a program (4). In the bottom left (5) is

an equivalent source-level representation.

LiLAC also generates the corresponding harness code (6),

which gets compiled into a shared library (7) that is linked

with the application binary. This harness interfaces with the

underlying library implementation, Intel MKL (8).

2.1 Implementation Overview
Figure 2 shows the internals of the LiLAC system. It is fully

integrated into the build system of the established LLVM

compiler framework, extending the clang compiler.

On the left is the LiLAC specification - just 16 lines of code.

It is independent of the user application and can be provided

by the library implementer. It consists of a What and a How
part. These two parts are processed by the LiLAC system

and result in a runtime library and a generated detection

function, which is incorporated into the clang compiler.

LiLAC-What specifies the functionality that is provided

by a library, in this example spmv-csr (cf. Figure 2). From this,

a function that detects the computation in normalized LLVM

IR code is generated and the harness interface is determined.

The detection functions are based on a backtracking search

algorithm, as elaborated in section 4. The detection function

is linked directly into the LiLAC-compiler, either statically

or dynamically at (compiler) run time.

LiLAC-How specifies how the library, Intel MKL in this

case, is invoked to perform the specified calculation. This

involves boilerplate code, but also advanced features. These

include efficient data synchronization and the caching of

invariants. In the given example, the columns variable is

such an invariant. It is required for the library call, but not
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LiLAC-What

LiLAC-compiler

detects computation
in application code,
cuts out and inserts

harness calls

LiLAC-How

llvm
code
baseHarness Interface

Detection Function LiLAC
llvm
pass

Shared Library

HARNESS mkl IMPLEMENTS spmv_csr
  sparse_matrix_t A;
  mkl_sparse_d_create_csr(&A, SPARSE_INDEX_BASE_ZERO,
      rows, columns, row_ptr, row_ptr+1, col_ind, val);
  struct matrix_descr D;
  D.type = SPARSE_MATRIX_TYPE_GENERAL;
  D.mode = SPARSE_FILL_MODE_LOWER;
  D.diag = SPARSE_DIAG_NON_UNIT;
  mkl_sparse_d_mv(SPARSE_OPERATION_NON_TRANSPOSE,
                  1.0, A, D, vector, 0.0, output);
Marshaling
  int columns = Maximum of col_ind[0 .. row_ptr[rows]]

void spmv_csr_harness(
     double* output,
     double* val,
     double* vector,
     int*    row_ptr,
     int*    col_ind,
     int     rows);

COMPUTATION spmv_csr
  forall(0 <= i < rows) {
    output[i] = sum(row_ptr[i] <= j < row_ptr[i+1])
                val[j] * vector[col_ind[j]]; }

us
es

links with

LiLAC SystemLibrary Implementers
generates

defines

generates

uses

uses

builds

Figure 2. Overview of LiLAC internals: On the left is the complete LiLAC program that the library implementer has to provide.

At compile time of LLVM, this program is parsed and incorporated into a modified clang C++ compiler, behaving as in Figure 1.

statically available. Therefore, it has to be computed at run-

time. Using Marshaling, LiLAC automatically generates the

harness such that this is only recomputed if the values in

row_ptr change. Such changes are captured with generated

memory protection code using mprotect, managed by LiLAC.

On the right of the figure, we can see how the components

generated from the LiLAC specification are used to build the

LiLAC-compiler. The detection function is compiled and

used directly by the LiLAC-Compiler, linked either statically

or dynamically. Interacting with the internals of LLVM, it

implements a transformation pass that is executed after the

normal optimization pipeline. Using the generated detection

function, it finds instances of the computation and replaces

them with calls to the specified harness interface.

The harness, on the other hand, is compiled into a shared

library. The LiLAC-compiler dynamically links applications

to this shared library whenever it inserts harness calls. When

multiple LiLAC-How programs are provided, the generated

harnesses are compatible and linking the user program to a

different harness library at runtime is sufficient.

3 What and How
This section describes in more detail the two components of

the LiLAC language. LiLAC-What specifies the computations

that a library performs; LiLAC-How describes how exactly

the library should be invoked to perform these computations.

3.1 LiLAC-What: Functional Description
At the heart of our approach is a simple language to specify

sparse and dense linear algebra operations. This serves two

purposes in our LiLAC system: Firstly, it is used to generate a

detection program for finding the computation in user code.

Secondly, it identifies the variables that are arguments to the

library, thus defining the harness interface.

proдram ::= COMPUTATION ⟨name⟩ ⟨body⟩

body ::= ⟨f orall⟩ | ⟨dotop⟩

ranдe ::= ( ⟨exp⟩ <= ⟨name⟩ < ⟨exp⟩ )
f orall ::= forall ⟨ranдe⟩ { ⟨body⟩ }
dotp ::= ⟨addr ⟩ = dot ⟨ranдe⟩ ⟨addr ⟩ * ⟨addr ⟩ ;
addr ::= ⟨name⟩ { [ ⟨exp⟩ ] }
add ::= ⟨exp⟩ + ⟨exp⟩
mul ::= ⟨exp⟩ * ⟨exp⟩
exp ::= ⟨name⟩ | ⟨cnst⟩ | ⟨addr ⟩ | ⟨add⟩ | ⟨mul⟩

Figure 3. Grammar of the LiLAC-What language

val =
[
1 1 2 2 -1 3 2 2 -1 1

]
col_ind =

[
0 2 1 3 1 2 3 3 2 4

]
row_ptr =

[
0 2 4 7 8 10

]
Figure 4. Compressed Sparse Row (CSR) representation as

used by the LiLAC-What example in Figure 1 and Figure 2

perm =
[
1 2 0 4 3

]
val =

[
-1 1 2 -1 2 3 1 2 1 2

]
col_ind =

[
1 0 1 2 3 2 2 3 4 3

]
jd_ptr =

[
0 5 9 10

]
nzcnt =

[
3 2 2 2 1

]
COMPUTATION spmv_jds
  forall(0 <= i < rows) {
    output[perm[i]] = sum(0 <= j < nzcnt[i])
      val[jd_ptr[j]+i] * vector[col_ind[jd_ptr[j]+i]]; }

Figure 5. Jagged Diagonal Storage (JDS) in LiLAC-What
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The key design challenge was to stay simple enough to

automatically generate robust detection functionality, yet

to be able to capture operations in all relevant data formats.

Most importantly, this includes the CSR/CSC, JDS and COO

formats. CSR and JDS are part of our evaluation. Across the

different formats, the control flow is rigid and easy to express.

This is reflected in the grammar as shown in Figure 3.

3.2 Sparse Matrix Variations in LiLAC-What
Sparse matrices can be stored in different formats. We intro-

duce two of them explicitly, but others are supported in the

same way by LiLAC-What.

Compressed Sparse Row (CSR) [44] All non-zero entries

are stored in a flat array val. The col_ind array stores the

column position for each value. Finally, the row_ptr array
stores the beginning of each row of the matrix as an offset

into the other two arrays. The number of rows in the matrix

is given directly by the length of the row_ptr array minus

one, however, the number of columns is not explicitly stored.

In Figure 4, a 5x5 matrix is shown represented in this format,

the LiLAC-What code is in the top left of Figure 2.

Jagged Diagonal Storage (JDS) [43] The matrix rows are

reordered such that the number of non-zeros per row is

decreasing. The permutation is stored in a vector perm,

the number of nonzeros in nzcnt. The nonzero entries are
then stored in an array val in the following order: The first

nonzero entry in each row, then the second nonzero entry in

each row etc. The array col_ind stores the column for each

of the values and jd_ptr stores offsets into val and col_idx.
The product of a sparse matrix in JDS format with a dense

vector is specified in LiLAC-What at the bottom of Figure 5.

Dense Detecting dense is easier than sparse, and existing

literature covers it well. We fully support dense but evaluate

it only briefly for completeness.

3.3 LiLAC-How
Where LiLAC-What specifies the computations implemented

by a library, LiLAC-How describes how precisely library calls

can be used to perform them. The language was designed

to support important existing libraries such as cuSPARSE,

clBLAS, and Intel MKL. The idiosyncrasies of these libraries

require LiLAC-How to capture some boilerplate C++ code

that manages the construction of parameter structures, call-

ing conventions etc. Aside from this aspect, we designed it as

high-level as possible without compromising performance.

In particular, LiLAC-How abstracts away memory transfers.

These considerations result in two interacting compo-

nents. Firstly, a harness describes the boilerplate code for

individual library invocations. Secondly, data marshaling be-
tween the core program and the library is specified, which is

crucial for heterogeneous compute environments. Figure 6

shows the grammar specification of LiLAC-How.

harness ::= HARNESS ⟨name⟩ IMPLEMENTS ⟨name⟩
⟨C + +⟩
[ ⟨marshalinд⟩ ] [ ⟨persistence⟩]
[ CppHeaderFiles { ⟨name⟩ } ]

persistence ::= PersistentVariables { ⟨name⟩ ⟨name⟩ }
[ BeforeFirstExecution ⟨C + +⟩ ]
[ AfterLastExecution ⟨C + +⟩ ]

marshallinд ::=Marshaling
{ ⟨type⟩ ⟨name⟩ = ⟨name⟩ of
⟨name⟩ [ 0 .. ⟨exp⟩ ] }

input ::= INPUT ⟨name⟩ ⟨C + +⟩
[ BeforeFirstExecution ⟨C + +⟩ ]
[ AfterLastExecution ⟨C + +⟩ ]

output ::= OUTPUT ⟨name⟩ ⟨C + +⟩
[ BeforeFirstExecution ⟨C + +⟩ ]
[ AfterLastExecution ⟨C + +⟩ ]

Figure 6. Grammar of LiLAC-How

3.3.1 Individual Library Invocations
We need to encapsulate the boilerplate code that any given

library requires, such as setup code, filling of parameter

structures etc. This part of the language is straightforward.

Harness The harness construct is the central way of telling

the LiLAC system how a library can be used to perform

a computation that was specified in LiLAC-What. As we

can see at the top of Figure 6, a harness refers to a LiLAC-

What program by name and also has a name itself. It is built

around some C++ code, which can use all the variables from

the LiLAC-What program to connect with the surrounding

program. It also needs to specify the relevant C++ header

files that the underlying library requires. Lastly, the harness

can incorporate persistent state and utilize data marshaling.

Persistence Many libraries need setup and cleanup code,

which is specified with the keywords BeforeFirstExecution
and AfterLastExecution. These are used in combination with

PersistentVariables, allowing state to persist between harness

invocations, e.g. to retain handlers to hardware accelerators.

Example In Figure 7, we see a trivial LiLAC-What program

for implementing spmv_csr with the Intel MKL library.

The actual call to the relevant library function is in line 16.

To prepare for that call, there is boilerplate code in lines 7–14

to fill parameter structures.

Critically, there is an additional parameter required by the

library that is data-dependent: the number of columns, cols,
in the sparse matrix. It is determined at runtime, in lines 2–5,

leading to reduced performance. We will avoid this with the

data marshaling constructs in the next section.
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 HARNESS mkl IMPLEMENTS spmv_csr
int cols = 0;
for(int i = 1; i < rowstr[rows]; i++)
  cols = colidx[i]>cols?colidx[i]:cols;
cols = cols+1;

sparse_matrix_t A;
mkl_sparse_d_create_csr(&A, SPARSE_INDEX_BASE_ZERO,
                        rows, cols, rowstr,
                        rowstr+1, colidx, a);
struct matrix_descr dscr;
dscr.type = SPARSE_MATRIX_TYPE_GENERAL;
dscr.mode = SPARSE_FILL_MODE_LOWER;
dscr.diag = SPARSE_DIAG_NON_UNIT;

mkl_sparse_d_mv(SPARSE_OPERATION_NON_TRANSPOSE,
                1.0, A, dscr, iv, 0.0, ov);

 PersistentVariables
"mkl.h"

1

2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17
18

19

Figure 7. This LiLAC-What program implements spmv-csr

naïvely with Intel MKL. Performance is degraded because of

lines 2–5. Figure 9 will present a solution to this bottleneck.

 INPUT CudaRead
cudaMemcpy(out, in, sizeof(type_in)*size,
           cudaMemcpyHostToDevice);

 BeforeFirstExecution
cudaMalloc(&out, sizeof(type_in)*size);

1
2
3
4
5

 BeforeFirstExecution
cudaFree(out);

6
7

Figure 8. LiLAC-How code to provide efficient automatic

data marshaling between the host and the CUDA accelerator.

 INPUT Maximum
out = in[0];
for(int i = 1; i < size; i++)
  out = in[i]>out?in[i]:out;
out = out+1;

1
2
3
4
5

Figure 9. INPUT can also be used to specify data-dependent

computations that are only recalculated when necessary.

 HARNESS cuda IMPLEMENTS spmv_csr

double alpha = 1.0;
double beta  = 0.0;
cusparseMatDescr_t descrA;
cusparseCreateMatDescr(&descrA);
cusparseDcsrmv(handle,
               CUSPARSE_OPERATION_NON_TRANSPOSE,
               rows, cols, ranges[rows], &alpha,
               descrA, d_mat, d_ranges, d_indir,
               d_vec, &beta, d_out);

 Marshaling
int      cols = Maximum of indir[0..ranges[rows]]
double* d_mat = CudaRead of matrix[0..ranges[rows]]
double* d_vec = CudaRead of vector[0..cols]
int* d_ranges = CudaRead of ranges[0..rows+1]
Int*  d_indir = CudaRead of indir[0..rowstr[rows]]
double* d_out = CudaWrite of output[0..rows]

 PersistentVariables
cusparseHandle_t handle

 BeforeFirstExecution
cusparseCreate(&handle);

 AfterLastExecution
cusparseDestroy(handle);

 CppHeaderFiles
<cuda_runtime.h> "cusparse_v2.h"

1

2
3
4
5
6
7
8
9
10

11

12
13
14
15
16
17

20
21

18
19

22
23

24
25

Figure 10. This LiLAC-What specification implements an

efficient SPMV harness using cuSPARSE in 25 lines of code.

3.3.2 Data Marshaling
Heterogeneous accelerators require data transfers to keep

memory consistent between host device and accelerator. To

achieve the best performance, these have to be minimized.

Importantly, unchanged data should never be copied again.

This requires program-wide analysis that is not available

statically. LiLAC-How uses memory protection to implement

this at runtime with minimal overhead by capturing read

and write accesses to memory ranges. The same mechanism

is used to cache data-dependent invariants across several

invocations, such as cols in Figure 7.

Data marshaling routines are bound to ranges of memory

in the harness. In the specification, the underlying array is

available using the identifiers in, size, and out.

3.3.3 Detailed Example
In Figure 8, the cudaMemcpy function from NVIDIA CUDA

is integrated with LiLAC-How. It is used to copy data from

the host to the accelerator. For this to work, it first needs to

allocate memory of the device using cudaMalloc, which
is later freed with cudaFree. Minimal memory transfers

are obtained by executing cudaMemcpy only when a value

in the array changes.

We can use the same construct to efficiently compute

values such as the cols variable in Figure 7, as shown in

Figure 9. The optimized implementation is derived from

Figure 7 lines 2-5. However, instead of the concrete variable

names, the reserved identifiers in, size, and out are used.

Figure 10 shows an spmv_csr LiLAC-How program for

the cuSPARSE library. A number of data marshaling variables

are introduced in lines 12–17, that automatically optimize

both memory transfers and the computation of the cols
variable. The core of the harness in lines 2–10 is again noth-

ing more than library-specific boilerplate C++ code.

4 Implementation
The LiLAC system, as shown in Figure 2 is entirely integrated

into the LLVM build system. When LLVM is compiled, the

LiLAC specification is parsed using a Python program. Based

on the LiLAC-What and LiLAC-How sections, C++ code is

generated that is automatically incorporated into LLVM in

further stages of the build process.

The result is an LLVM optimization pass that is available

when linking LLVM with the clang C/C++ compiler. This

pass performs the discovery of linear algebra code and the

insertion of harness calls. Furthermore, the harness libraries

themselves are built at compile time of LLVM, using C++

code emitted from the LiLAC-How sections.

The two crucial implementation details are therefore the

following: Firstly, how automatic detection functionality

in C++ is generated from the LiLAC-What specifications.

Secondly, how the LiLAC-How sections are used to generate

fast C++ implementations of the specified library harnesses.
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4.1 LiLAC-What
The parsed LiLAC-What sections are turned into C++ func-

tions that recognize places for harness call insertions in an

LLVM pass. This builds on previous work via a formulation

in CAnDL [21]. Detection is done on optimized compiler

intermediate representation. Standard -O2 optimizations,

excluding loop unrolling and vectorization, normalize the

intermediate code. Optimizations minimize programming

language-specific artifacts and the impact of syntax-level

programmer decisions.

The effect is demonstrated in Figure 11, which shows three

implementations of a dot product in different languages:

C, C++, and FORTRAN. After translating to LLVM IR and

performing optimizations, the dot product is recognized in

the LiLAC system using the same LiLAC-What specification.

The detection comprises two steps, as demonstrated in

Figure 13. Firstly, the control flow skeleton is recognized.

This is simple, as LiLAC-What can only express control flow

in the form of loop nests of a certain depth. After candidate

loop nests have been identified, the index and loop range

calculations from LiLAC-What are mapped onto the LLVM IR

nodes. This is done via a backtracking search procedure and

allows robust detection across many syntactically different

input programs, as described in [21, 22].

4.1.1 Backtracking Search Algorithm
For detecting instances of LiLAC-What specifications in user

programs, LLVM IR segments that match the control flow

skeleton are identified. These control flow candidates are

then processed with a backtracking search algorithm.

All ⟨exp⟩ expressions in the LiLAC-What program are

identified. These have to be assigned instructions or other

values from the LLVM IR segment. Those top-level ⟨exp⟩
expressions that are used as limits or iterators in ⟨ranдe⟩
expressions are easily connected with the corresponding

loop boundaries in the control flow candidates.

The remaining expressions are successively assigned by

backtracking. Consider the example in Figure 12, which

shows a candidate loop from the LLVM IR generated from

the C++ dot product code in Figure 11. The iteration space

is determined by loop analysis and this immediately allows

us to assign the iterator and range in Figure 13 on the left.

The LLVM IR values that correspond to a[i], a, b[i], b,
a[i]*b[i] and result are then searched for. When a

partial solution fails, the algorithm backtracks. This happens

in the example once, when no suitable multiplication can be

found in step 5. If no complete solution can be determined,

the control flow candidate is discarded.

4.1.2 Code Replacement
Each loop nest that matches a LiLAC-What specification is

replaced with a harness call. To minimize the invasiveness

of our pass, this is performed as follows: Firstly, a harness

COMPUTATION dotproduct
result = sum(0 <= i < length) a[i] * b[i];

int i = 0;
while(i < N) {

x += (*(A+i))*(*(B+i));
i+=1; }

for(int i = 0; i < vec_a.size(); i++)
x += vec_a[i]*vec_b[i];

DO I = 1, N, 1
X = X + A(i)*B(i)

END DO

Figure 11. Syntactically different computations in C, C++,

or FORTRAN are captured by one LiLAC-What specification.

; <label>:17:
%18 = phi i64 [ 0, %10 ], [ %26, %17 ]
%19 = phi double [ 0.0, %10 ], [ %25, %17 ]
%20 = getelementptr double, double* %9, i64 %18
%21 = load double, double* %20
%22 = getelementptr double, double* %12
%23 = load double, double* %22
%24 = fmul double %21, %23
%25 = fadd double %19, %24
%26 = add nuw i64 %18, 1
%27 = icmp ugt i64 %14, %26
br i1 %27, label %17, label %15

Figure 12. LiLAC intercepts LLVM IR after optimizations.

This ensures normalized and language-independent features.

a[i] ← 1: %21
a ← 2: %9

i ← %18 b[i] ← 3: %21 6: %23
length ← %14 b ← 4: %9 7: %12

a[i] * b[i] ← 5: fail! 8: %24
result ← 9: %25

Figure 13.After finding a candidate loop and receiving some

variables from loop analysis (left), the backtracking solver

attempts to assign the remaining variables one by one (right).

call is inserted directly before the loop. The function call

arguments are selected from the backtracking result and

passed to the harness. Secondly, the LLVM instruction that

stores the result of the computation or passes it out of the

loop as a phi node is removed. The remainder of the loop

nest is removed automatically by dead code elimination.

4.2 LiLAC-How
LiLAC-How syntax elements that take C++ code generate

generic functions, and template parameter deduction inserts

concrete types during the compilation process.

In Figure 14, we see the correspondence between gener-

ated C++ template functions and the specification in Figure 8.

The three function bodies are directly inserted. The functions

are used to specialize the ReadObject class template, which

guarantees the following properties via memory protection:

construct is called before the first invocation and when

in or size change for consecutive harness invocations.
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1 template<typename type_in, typename type_out>
2 void CudaRead_update(type_in* in, int size,
3 type_out& out) {
4 cudaMemcpy(out, in, sizeof(type_in)*size,
5 cudaMemcpyHostToDevice);
6 }
7 template<typename type_in, typename type_out>
8 void CudaRead_construct(int size, type_out& out) {
9 cudaMalloc(&out, sizeof(type_in)*size);
10 }
11 template<typename type_in, typename type_out>
12 void CudaRead_destruct(int size, type_out& out) {
13 cudaFree(out);
14 }
15 template<typename type_in, typename type_out>
16 using CudaRead = ReadObject<type_in, type_out,
17 CudaRead_update<type_in,type_out>,
18 CudaRead_construct<type_in,type_out>,
19 CudaRead_destruct<type_in,type_out>>;

Figure 14. LiLAC uses code from Figure 8 to define three

functions that specialize the ReadObject template, which

uses mprotect for capturing memory accesses internally.

update is called after construct and if any of the data in the

array is changed between consecutive harness invocations.

destruct is called in between consecutive construct calls and
before the program terminates.

4.3 FORTRAN
The LLVM frontend for FORTRANunder active development,

flang, is in an unfinished state and produces unconventional

LLVM IR code. Significant additional work was required to

normalize the IR code. We developed normalization passes

in LLVM to overcome the specific shortcomings, enabling

FORTRAN programs to be managed as easily as C/C++.

The problems that we encountered included: differing

indexing conventions requiring offsetting pointer variables

on a byte granularity with untyped pointers; incompatible

intermediate representation types where all parameters are

passed in as i64 pointers, frequently necessitating a pointer

type conversion followed by a load frommemory; obfuscated

loops with additional induction variable that counts down

instead of up such that the standard LLVM indvars pass is
unable to merge the loop iterators.

5 Experimental Setup
We wrote short LiLAC programs for a collection of linear

algebra libraries and applied our approach to a chemical

simulation application, two graph analytics applications and

a collection of standard benchmark suites.

Libraries We selected four different libraries for sparse

linear algebra functions. These were: Intel MKL [3], Nvidia

cuSPARSE [5], clSPARSE [2] and SparseX [19]. MKL is a

general-purpose mathematical library, while clSPARSE and

cuSPARSE are OpenCL and CUDA implementations of sparse

linear algebra designed to be executed on the GPU, and

SparseX uses an auto-tuning model and code generation to

optimize sparse operations on particular matrices.

Name Hardware Libraries

Intel-0 2× Intel Xeon E5-2620

Nvidia Tesla K20 GPU

MKL

cuSPARSE

clSPARSE

SparseX

Intel-1 Intel Core i7-8700K

Nvidia GTX 1080 GPU

AMD AMD A10-7850K

AMD Radeon R7 iGPU

Nvidia Titan X GPU

cuSPARSE

clSPARSE ×2

SparseX

Table 1. Evaluated platforms and library harnesses; AMD-0

supports clSPARSE on both its internal and its external GPU.

Applications To evaluate the impact of LiLAC in a real-

world context, we used the pathsample physical chemistry

simulation suite, a large FORTRAN legacy application [56]

consisting of over 40,000 lines of code. Recent work shows

that applications in this area are amenable to acceleration

using sparse linear algebra techniques [53], and pathsample

provides a useful example of this. We also evaluated two

modern C++ graph analytics kernels (BFS and PageRank

[11, 15]). pathsample was run in two different modes and

three different levels of pruning, in each case using a system

of 38 atoms [18] commonly used to evaluate applications in

this domain. The graph kernels were run against 10 matrices

from the University of Florida’s sparse matrix collection [14],

with sizes between 300K and 80M non-zero elements.

For completeness and validation that our LiLAC-generated

implementations were correct, we also applied our tech-

nique to sparse programs from standard benchmark suites:

CG from the NAS parallel benchmarks [9], spmv from Par-

boil [48] and the Netlib sparse benchmark suites [17]. Each

benchmark suite was run using their supplied inputs.

Platforms We evaluated our approach across 3 different

machines with varying hardware performance and software

availability. Each one was only compatible with a subset of

our LiLAC-generated implementations—a summary of these

machines is given in Table 1.

6 Results
We first present raw performance impact, then we analyze

two intermediate metrics: reliability of linear algebra discov-

ery and effectiveness of memory transfer optimizations.

6.1 Performance
LiLAC achieves significant speedups on real applications as

well as benchmarks, as shown in Figure 15. Baselines were

compiled with -O2 using the same version of clang without

LiLAC extensions. Higher optimization levels (-O3) had a

negligible impact on performance. Different platforms and

applications profit from different libraries (subsection 6.2).

Speedup ranges from 1.1–3× on the scientific application

codes to 12× on well-known sparse benchmark programs.
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Figure 15. Evaluation on real-world applications and well-known benchmarks: Bars show the geomean speedup of the

best-performing LiLAC harness across the set of input examples for each program and platform. Hatchings encode the selected

implementations. The baseline is the identical source code compiled with clang -O2, yielding sequential CPU-only programs.

Applications On the pathsample applications (PFold and

NGT), we measured consistent speedups of approximately

50% and 10% respectively across all 3 platforms. For large ap-

plications, Amdahl’s law is a severe limitation for approaches

like ours – other parts of the applications dominate execution

times when linear algebra is accelerated.

Graphkernels PageRank requires a large number of SPMV

calls using the same input matrix to iterate until convergence.

The GPU implementations running on AMD and Intel-1 take

advantage of data remaining in memory. The larger number

of CPU cores and slower GPU available on Intel-0 make MKL

its best-performing implementation. CPU implementations

perform best on BFS by avoiding memory copies entirely –

on AMD, SparseX outperforms GPU implementations.

Benchmarks LiLAC achieves speedups of up to 12× on

standard sparse linear algebra benchmarks. The impact is

independent of the source language, as the C and FORTRAN

versions of the Netlib benchmark demonstrate. LiLAC is able

to achieve consistent, useful speedups across a variety of

hardware configurations.

Dense We evaluated on some dense benchmarks as well.

In line with the literature, dense is very amenable to hetero-

geneous acceleration. We achieve 20× speedup on Parboil

sgemm by inserting LiLAC-harnessed calls into sequential

baseline. However, impressive heterogeneous speedups on

dense are well explored in the literature, we focus on sparse.

Comparison to Expert NPB and Parboil contain expert-

written alternative versions with GPU acceleration. This

allowed the evaluation of LiLAC against heterogeneous code

reaching close to peak performance, shown in Figure 16.

While the expert version of NPB-CG is ∼ 3× faster, this

is not due to an improved sparse linear algebra operation,

but a complete parallelization and rewrite of the program

NPB-CG Parboil
0.0

0.2

0.4

0.6

0.8

1.0

Pe
rfo

rm
an

ce
 (×

)

LiLAC vs. Expert Implementation
LiLAC
Expert

Benchmark Modified LoC
LiLAC Expert

NPB-CG 0 (44) 1948

Parboil SPMV 0 (44) 261

Figure 16. LiLAC performance as fraction of expert version

performance. We achieve good speedup with no application

programmer effort (measured as required LoC change). The

LiLAC required code – identical across programs – is in

parentheses. Amdahl’s Law limits our impact on NPB-CG.

for the GPU. In Parboil SPMV, the expert version focuses on

improved sparse linear algebra. Here the difference between

an expert and LiLAC is only 1.07×.

Productivity The bottom of Figure 16 shows the amount

of code modified in order to add heterogeneous acceleration

manually vs with LiLAC. This demonstrates the productivity

improvements for application programmers. No lines of user

code need to be modified using LiLAC, while both expert

versions require significant application rewrites. Only 44

lines of application-independent LiLAC code is required.

6.2 Necessity of Flexible Backends
The relative performance of different accelerator libraries

is highly dependent on the application, problem size, and

platform, as Figure 17 shows.
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Platform Implementation PFold NGT PageRank BFS
L0 L1 L2 L0 L1 L2 Erdos LJ-2008 Road Erdos LJ-2008 Road

AMD

cuSPARSE 1.38 1.18 0.67 0.69 0.69 0.70 3.44 1.18 9.97 1.62 6.55 1.96

clSPARSE (eGPU) 2.17 1.82 1.22 1.16 1.16 1.16 3.08 1.24 6.06 0.50 11.03 0.24

clSPARSE (iGPU) 2.03 1.78 1.03 0.90 0.90 0.90 3.26 1.31 4.05 0.14 4.17 0.05

SparseX - - - - - - - - - 1.93 - -

Intel-0

MKL 2.88 2.46 1.00 1.18 1.18 1.18 1.25 2.93 1.72 2.50 1.06 1.05
cuSPARSE 0.75 0.60 0.45 0.66 0.66 0.66 1.39 1.00 3.32 0.87 1.74 1.28

clSPARSE 0.90 0.75 0.46 0.81 0.79 0.78 1.24 0.95 2.24 0.13 1.45 0.07

SparseX - - - - - - - - - 1.19 - -

Intel-1

MKL 2.70 2.43 1.01 1.20 1.20 1.19 1.63 1.03 2.26 1.06 2.09 1.27
cuSPARSE 0.48 0.41 0.30 0.68 0.69 0.68 1.59 0.87 4.44 1.01 1.83 1.63

clSPARSE 1.00 1.00 1.00 1.00 1.02 1.00 1.50 0.87 3.46 0.23 1.81 0.13

SparseX - - - - - - - - - 1.25 - -

Table 2. LiLAC speedups on each platform, across different applications and problem sizes. SparseX demonstrated promising

performance on some applications, but we were unable to evaluate on every relevant instance due to instability. Implementation

with best geomean speedup per benchmark and platform is bold.
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Figure 17. Distribution of speedups on NPB-CG. The stacks

within each of the three columns are sorted by problem size,

each point shows the speedup of a specific implementation.

Table 2 has more detailed data. The best-performing imple-

mentation varies considerably, depending on characteristics

of the problem in question. No accelerator library performs

well reliably, each harness outperforms any other harness on

some combination of data set and platform. For some small

problem sizes, hardware acceleration is not profitable. Those

slowdowns are due to inherent overheads, not LiLAC.

6.3 Effectiveness of Data Marshaling
Our implementation of LiLAC relies on a non-trivial data

marshaling system that prevents redundant computations

and memory transfers. We present performance results that

show the importance and effectiveness of this system.

We repeated our experiments, using the best-performing

implementations from Figure 15. Instead of using the data

marshaling scheme, we recompute and transfer memory

naively for each invocation. The results are in Figure 18.

Across the best AMD versions of PFold, NGT, PageRank and

BFS – where accelerators are profitable with marshaling –

only PageRank achieves a significant speedup naively.

For BFS, the naive approach leads to drastic performance

degradation, the marshaling version is 25× faster. This is

because it performs an internal matrix tuning phase that is

far more expensive than a memory copy. For the other three

programs, there is a factor of 1.4–3.5× between the naive

and the smart version.

PFold
CL eGPU

NGT
CL eGPU

PageRank
cuSPARSE

BFS
SparseX
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Figure 18. LiLAC vs. naïve library calls without marshaling

optimizations, speedup over sequential baseline: Advanced

marshaling features of LiLAC are critical for performance.

6.4 Reliability of Discovery
For performance impact, LiLAC needs to first detect linear

algebra computations. Previous results already implied that

this works reliably, and Table 3 reiterates this. All relevant

sparse matrix-vector multiplications were recognized.

Established approaches, like the polyhedral model, are

unable to model sparse linear algebra, as verified with the

Polly compiler. Similarly, the Intel C/C++ and FORTRAN

compilers fail to auto-parallelize, as they cannot reason about

sparsity and have to assume additional dependencies.

These results show the novelty of the abilities of LiLAC

rather than implementation weaknesses of Polly and ICC, as

neither were designed for accelerating sparse computations.

Table 3. Sparsity does not fit the polyhedral model; Polly is

not available for FORTRAN; Intel compilers fail to parallelize

sparse. Only LiLAC detects sparse linear algebra reliably.

Benchmark LiLAC Polly Intel icc/ifort
PFold CSR - parallel dependence

NGT CSR - parallel dependence

Parboil-SPMV JDS no SCoP parallel dependence

BFS CSR no SCoP parallel dependence

NPB-CG CSR - parallel dependence

PageRank CSR no SCoP parallel dependence

Netlib C CSR no SCoP parallel dependence

Netlib Fortran CSR - parallel dependence
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7 Related Work
Compiler centric linear algebra optimization Compiler

management of indirect memory accesses was first examined

using an inspector-executor model for distributed-memory

machines [10]. The location of read data was discovered

at runtime and appropriate communication inserted. Later

work was focused on efficient runtime dependence analysis

and the parallelization of more general programs [20, 38, 41,

49]. However, the performance achieved is modest due to

runtime overhead and falls well short of library performance.

More recent work developed equality constraints and subset

relations that help reduce the runtime overhead [32].

The polyhedral model is an established compiler approach

for modeling data dependencies [12, 24, 26, 42, 47]. Such an

approach has been implemented in optimizing compilers,

such as the Polly extensions to LLVM [16]. Recent work

has extended the polyhedral model beyond affine programs

to some forms of sparsity with the PENCIL extensions [8].

These can be used to model important features of sparse

linear algebra, such as counted loops [58], i.e. loops with

dynamic, memory dependent bounds but statically known

strides. Such loops are central to sparse linear algebra. The

PPCG compiler [54] can detect relevant code regions, but

it relies on well behaved C code with all arrays declared in

variable-length C99 array syntax. This excludes most real-

world programs; nothing in our evaluation fits this structure.

The Appollo system [51] integrates thread level specula-

tion with the polyhedral model, allowing its application to

sparse linear algebra. However, it requires sub-parts of the

computation to perform dense accesses at runtime. Similar

approaches [7] also require regular sub-computations.

Compiler detection Previouswork has detected code struc-

tures in compilers using constraint programming. Early work

was based on abstract computation graphs [37], but more

recent approaches have used compiler intermediate code and

made connections to the polyhedral model [21].

In [22] they implement a method that operates on SSA

intermediate representation. It uses a general-purpose low-

level constraint programming language aimed at compiler

engineers. The paper focuses on code detection, with manual

data marshaling. Recent work [13] uses type-guided program

synthesis to model library routines, which are then detected

by a solver. Again, data marshaling is not taken into account.

Other advanced approaches to extracting higher-level

structures from assembly and well-structured FORTRAN

code involve temporal logic [27, 31]. These approaches tend

to focus on a more restricted set of computations (dense

memory access). While this allows formal reasoning about

correctness, is too restrictive to model sparse linear algebra.

Domain-Specific Languages There have been multiple

domain-specific libraries proposed to formulate linear al-

gebra computations. Many of these contain some degree of

autotuning functionality to achieve good performance across

different platforms [50]. Halide [39] was designed for image

processing. [52]. Its core design decision is the scheduling

model that allows the separation of the computation sched-

ule and the actual computation. There has been work on

automatically tuning the schedules [35] but in general, the

computational burden is put on the application programmer.

The SLinGen [45] compiler takes a program expressed in

the custom LA language, inspired by standard mathematical

notation. It then implements custom code generation for

the expressed calculations, with a focus on small, fixed-size

operands. This is built on top of building blocks provided

by previous work on LGen [46]. The approach outperforms

libraries focused on large data sizes but is unable to utilize

heterogeneous compute and requires program rewrites.

Libraries The most established way of encapsulating fast

linear algebra routines is via numeric libraries, generally

based on the BLAS interface [6]. These are generally very

fast on specific hardware platforms, but require application

programmer effort and offer little performance portability.

Implementations of dense linear algebra are available for

most suitable hardware platforms, such as cuBLAS [4] for

NVIDIA GPUs, clBLAS [1] for AMD GPUs and the Intel MKL

library [3] for Intel CPUs and accelerators.

Fast implementations of sparse linear algebra are fewer,

but they exist for the most important platforms, including

cuSPARSE [5] and clSPARSE [2]. There have been several

BLAS implementations that attempt platform independent

acceleration and heterogeneous compute [33, 34, 57].

CPU-GPU data transfer optimizations Data transfers

between CPU and GPU have been studied extensively as

an important bottleneck for parallelization efforts. Previ-

ous work [25, 30] established systems for automatic man-

agement of CPU-GPU communication. The authors of [29]

implemented a system to move OpenMP code to GPUs, opti-

mizing data transfers using data flow analysis. However, this

approach performs a direct translation, not optimizing the

code for the specific performance characteristics of GPUs.

8 Conclusion
This paper presented LiLAC, a language and compiler that en-

ables existing codebases to exploit sparse (and dense) linear

algebra accelerators. No effort is required from the applica-

tion programmer. Instead, the library implementer provides

a specification, which LiLAC uses to automatically and effi-

ciently match user code to high-performance libraries.

We demonstrated this approach on C, C++, and FORTRAN

benchmarks as well as legacy applications, and shown signif-

icant performance improvement across platforms and data

sets. In future work, we will investigate how our framework

can be adapted to other application domains, enabling effort-

free access to an even larger set of accelerator libraries.
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